Oblasť plochej postavy ohraničená čiarami. Vypočítajte plochu obrázku ohraničenú čiarami

V tomto článku sa dozviete, ako nájsť oblasť obrázku ohraničenú čiarami pomocou integrálnych výpočtov. Prvýkrát sa s formulovaním takéhoto problému stretávame na strednej škole, keď je práve ukončené štúdium určitých integrálov a je čas začať s geometrickým výkladom získaných poznatkov v praxi.

Čo je teda potrebné na úspešné vyriešenie problému nájdenia oblasti obrázku pomocou integrálov:

  • Schopnosť správne kresliť kresby;
  • Schopnosť riešiť určitý integrál pomocou známeho Newtonovho-Leibnizovho vzorca;
  • Možnosť „vidieť“ výnosnejšie riešenie – t.j. pochopiť, ako bude v tomto alebo tom prípade pohodlnejšie vykonať integráciu? Pozdĺž osi x (OX) alebo osi y (OY)?
  • Kde bez správnych výpočtov?) To zahŕňa pochopenie toho, ako vyriešiť tento iný typ integrálov a správne numerické výpočty.

Algoritmus na riešenie problému výpočtu plochy obrazca ohraničeného čiarami:

1. Vytvárame výkres. Je vhodné to urobiť na kus papiera v klietke vo veľkom meradle. Ceruzkou nad každým grafom podpisujeme názov tejto funkcie. Podpis grafov sa vykonáva výlučne pre pohodlie ďalších výpočtov. Po prijatí grafu požadovaného čísla bude vo väčšine prípadov okamžite jasné, ktoré integračné limity sa použijú. Úlohu teda riešime graficky. Stáva sa však, že hodnoty limitov sú zlomkové alebo iracionálne. Preto môžete vykonať ďalšie výpočty, prejdite na druhý krok.

2. Ak integračné limity nie sú explicitne nastavené, nájdeme medzi sebou priesečníky grafov a uvidíme, či sa naše grafické riešenie zhoduje s analytickým.

3. Ďalej musíte analyzovať výkres. V závislosti od toho, ako sú umiestnené grafy funkcií, existujú rôzne prístupy k nájdeniu oblasti obrázku. Zvážte rôzne príklady hľadania oblasti obrazca pomocou integrálov.

3.1. Najklasickejšia a najjednoduchšia verzia problému je, keď potrebujete nájsť oblasť krivočiareho lichobežníka. Čo je to krivočiary lichobežník? Toto je plochý obrazec ohraničený osou x (y=0), rovný x = a, x = b a ľubovoľná krivka súvislá na intervale od a predtým b. Toto číslo zároveň nie je záporné a nenachádza sa nižšie ako os x. V tomto prípade sa plocha krivočiareho lichobežníka numericky rovná určitému integrálu vypočítanému pomocou vzorca Newton-Leibniz:

Príklad 1 y = x2 - 3x + 3, x = 1, x = 3, y = 0.

Aké čiary definujú postavu? Máme parabolu y = x2 - 3x + 3, ktorá sa nachádza nad osou OH, je nezáporné, pretože všetky body tejto paraboly sú kladné. Ďalej, dané rovné čiary x = 1 a x = 3 ktoré prebiehajú rovnobežne s osou OU, sú ohraničujúce čiary obrázku vľavo a vpravo. Dobre y = 0, ona je os x, ktorá obmedzuje postavu zdola. Výsledný obrázok je vytieňovaný, ako je vidieť na obrázku vľavo. AT tento prípad, môžete problém okamžite začať riešiť. Pred nami je jednoduchý príklad krivočiareho lichobežníka, ktorý potom riešime pomocou Newtonovho-Leibnizovho vzorca.

3.2. V predchádzajúcom odseku 3.1 bol analyzovaný prípad, keď je krivočiary lichobežník umiestnený nad osou x. Teraz zvážte prípad, keď sú podmienky problému rovnaké, okrem toho, že funkcia leží pod osou x. K štandardnému Newton-Leibnizovmu vzorcu sa pridáva mínus. Ako vyriešiť takýto problém, zvážime ďalej.

Príklad 2 . Vypočítajte plochu obrázku ohraničenú čiarami y=x2+6x+2, x=-4, x=-1, y=0.

V tomto príklade máme parabolu y=x2+6x+2, ktorý vychádza pod osou OH, rovný x=-4, x=-1, y=0. Tu y = 0 obmedzuje požadovanú hodnotu zhora. Priamy x = -4 a x = -1 toto sú hranice, v rámci ktorých sa bude počítať určitý integrál. Princíp riešenia problému nájdenia oblasti obrázku sa takmer úplne zhoduje s príkladom číslo 1. Jediný rozdiel je v tom, že daná funkcia nie je kladná a je tiež spojitá na intervale [-4; -1] . Čo neznamená pozitívne? Ako je zrejmé z obrázku, obrazec, ktorý leží v danom x, má výlučne „záporné“ súradnice, čo musíme vidieť a zapamätať si pri riešení úlohy. Hľadáme oblasť postavy pomocou vzorca Newton-Leibniz, iba so znamienkom mínus na začiatku.

Článok nie je dokončený.

Začneme uvažovať o samotnom procese výpočtu dvojitého integrálu a oboznámime sa s jeho geometrickým významom.

Dvojitý integrál numericky rovná ploche plochá postava(integračné domény). Ide o najjednoduchší tvar dvojitého integrálu, keď sa funkcia dvoch premenných rovná jednej: .

Najprv sa pozrime na problém všeobecne. Teraz budete prekvapení, aké jednoduché to naozaj je! Vypočítajme plochu plochého obrázku ohraničeného čiarami. Pre istotu predpokladáme, že na intervale . Plocha tohto obrázku sa číselne rovná:

Znázornime oblasť na výkrese:

Vyberme si prvý spôsob obídenia oblasti:

Touto cestou:

A hneď dôležitý technický trik: iterované integrály možno posudzovať samostatne. Najprv vnútorný integrál, potom vonkajší integrál. Táto metóda sa dôrazne odporúča pre začiatočníkov v téme čajníky.

1) Vypočítajte vnútorný integrál, pričom integrácia sa vykonáva nad premennou "y":

Neurčitý integrál je tu najjednoduchší a potom sa používa banálny Newton-Leibnizov vzorec, len s tým rozdielom, že limitmi integrácie nie sú čísla, ale funkcie. Najprv sme dosadili hornú hranicu do „y“ (antiderivačná funkcia), potom dolnú hranicu

2) Výsledok získaný v prvom odseku musí byť dosadený do externého integrálu:

Kompaktnejší zápis celého riešenia vyzerá takto:

Výsledný vzorec - to je presne pracovný vzorec na výpočet plochy plochej postavy pomocou „obyčajného“ určitého integrálu! Pozri lekciu Výpočet plochy pomocou určitý integrál , tam je na každom kroku!

teda problém výpočtu plochy pomocou dvojitého integrálu trochu inak z problému nájdenia oblasti pomocou určitého integrálu! V skutočnosti sú jedno a to isté!

Preto by nemali vzniknúť žiadne ťažkosti! Nebudem uvažovať o mnohých príkladoch, pretože ste sa s týmto problémom v skutočnosti opakovane stretli.

Príklad 9

Riešenie: Znázornime oblasť na výkrese:

Zvoľme nasledovné poradie prechodu regiónu:

Tu a nižšie sa nebudem zaoberať tým, ako prejsť oblasťou, pretože prvý odsek bol veľmi podrobný.

Touto cestou:

Ako som už poznamenal, pre začiatočníkov je lepšie počítať iterované integrály samostatne, budem dodržiavať rovnakú metódu:

1) Najprv sa pomocou Newtonovho-Leibnizovho vzorca zaoberáme vnútorným integrálom:

2) Výsledok získaný v prvom kroku sa dosadí do vonkajšieho integrálu:

Bod 2 je vlastne nájdenie plochy plochej postavy pomocou určitého integrálu.

odpoveď:

Tu je taká hlúpa a naivná úloha.

Zaujímavý príklad nezávislého riešenia:

Príklad 10

Pomocou dvojitého integrálu vypočítajte plochu rovinného útvaru ohraničeného priamkami , ,

Príklad konečného riešenia na konci hodiny.

V príkladoch 9-10 je oveľa výhodnejšie použiť prvý spôsob obchádzania územia, zvedaví čitatelia si mimochodom môžu zmeniť poradie obchvatu a vypočítať plochy druhým spôsobom. Ak neurobíte chybu, prirodzene sa získajú rovnaké hodnoty plochy.

V niektorých prípadoch je však efektívnejší druhý spôsob, ako obísť oblasť, a na záver kurzu mladého hlupáka sa pozrime na niekoľko ďalších príkladov na túto tému:

Príklad 11

Pomocou dvojitého integrálu vypočítajte plochu rovinného útvaru ohraničeného čiarami.

Riešenie: tešíme sa na dve paraboly s vánkom, ktoré ležia na boku. Netreba sa usmievať, s podobnými vecami vo viacerých integráloch sa stretávame často.

Aký je najjednoduchší spôsob, ako urobiť kresbu?

Predstavme si parabolu ako dve funkcie:
- horná vetva a - spodná vetva.

Podobne si predstavte parabolu ako hornú a spodnú pobočky.

Ďalej, bodové vykresľovanie jednotiek, čo vedie k takémuto bizarnému obrázku:

Plocha obrázku sa vypočíta pomocou dvojitého integrálu podľa vzorca:

Čo sa stane, ak zvolíme prvý spôsob obídenia oblasti? Po prvé, táto oblasť bude musieť byť rozdelená na dve časti. A po druhé, uvidíme tento smutný obrázok: . Integrály, samozrejme, nie sú na superkomplexnej úrovni, ale ... hovorí staré matematické príslovie: kto je priateľský s koreňmi, nepotrebuje kompenzovanie.

Preto z nedorozumenia, ktoré je uvedené v podmienke, vyjadrujeme inverzné funkcie:

Inverzné funkcie v tomto príklade majú výhodu, že okamžite nastavia celú parabolu bez akýchkoľvek listov, žaluďov, konárov a koreňov.

Podľa druhej metódy bude prechod oblasti takýto:

Touto cestou:

Ako sa hovorí, cítiť rozdiel.

1) Zaoberáme sa vnútorným integrálom:

Výsledok dosadíme do vonkajšieho integrálu:

Integrácia nad premennou "y" by nemala byť trápna, ak by tam bolo písmeno "zyu" - bolo by skvelé nad ním integrovať. Hoci kto čítal druhý odsek lekcie Ako vypočítať objem rotačného telesa, s integráciou nad „y“ už nezažíva ani najmenšie rozpaky.

Venujte pozornosť aj prvému kroku: integrand je párny a segment integrácie je symetrický okolo nuly. Preto je možné segment rozdeliť na polovicu a výsledok môže byť dvojnásobný. Táto technika je v lekcii podrobne komentovaná. Efektívne metódy výpočet určitého integrálu.

Čo dodať…. Všetko!

odpoveď:

Ak chcete otestovať svoju integračnú techniku, môžete skúsiť vypočítať . Odpoveď by mala byť úplne rovnaká.

Príklad 12

Pomocou dvojitého integrálu vypočítajte plochu rovinného útvaru ohraničeného čiarami

Toto je príklad „urob si sám“. Je zaujímavé poznamenať, že ak sa pokúsite použiť prvý spôsob na obídenie oblasti, postava sa už nerozdelí na dve, ale na tri časti! A podľa toho dostaneme tri páry iterovaných integrálov. Niekedy sa to stane.

Majstrovská trieda sa skončila a je čas prejsť na úroveň veľmajstra - Ako vypočítať dvojitý integrál? Príklady riešení. V druhom článku sa budem snažiť nebyť taký maniak =)

Prajem vám úspech!

Riešenia a odpovede:

Príklad 2:Riešenie: Nakreslite oblasť na výkrese:

Zvoľme nasledovné poradie prechodu regiónu:

Touto cestou:
Prejdime k inverzným funkciám:


Touto cestou:
odpoveď:

Príklad 4:Riešenie: Prejdime k priamym funkciám:


Vykonajte kreslenie:

Zmeňme poradie prechodu oblasti:

odpoveď:

V skutočnosti, aby ste našli oblasť obrázku, nepotrebujete toľko vedomostí o neurčitom a určitom integráli. Úloha "vypočítať plochu pomocou určitého integrálu" vždy zahŕňa konštrukciu výkresu, o veľa viac aktuálny problém budú vaše vedomosti a zručnosti v kreslení. V tomto ohľade je užitočné obnoviť si pamäť grafov hlavných elementárnych funkcií a prinajmenšom vedieť zostaviť priamku a hyperbolu.

Krivkový lichobežník je plochý útvar ohraničený osou, priamkami a grafom spojitej funkcie na segmente, ktorý na tomto intervale nemení znamienko. Nechajte tento obrázok nájsť nie menejúsečka:

Potom plocha krivočiareho lichobežníka sa číselne rovná určitému integrálu. Akýkoľvek určitý integrál (ktorý existuje) má veľmi dobrý geometrický význam.

Z hľadiska geometrie je určitým integrálom PLOCHA.

teda určitý integrál (ak existuje) geometricky zodpovedá ploche nejakého útvaru. Uvažujme napríklad určitý integrál . Integrand definuje krivku v rovine, ktorá sa nachádza nad osou (tí, ktorí si želajú, môžu dokončiť výkres) a samotný určitý integrál sa číselne rovná ploche zodpovedajúceho krivočiareho lichobežníka.

Príklad 1

Toto je typická úloha. Najprv a rozhodujúci moment riešenia - zostavenie výkresu. Okrem toho musí byť vytvorený výkres SPRÁVNY.

Pri zostavovaní plánu odporúčam nasledujúce poradie: najprv je lepšie zostaviť všetky čiary (ak existujú) a len po- paraboly, hyperboly, grafy iných funkcií. Vytváranie funkčných grafov je výhodnejšie bodovo.

V tomto probléme môže riešenie vyzerať takto.
Urobme nákres (všimnite si, že rovnica definuje os):


Na segmente sa nachádza graf funkcie cez os, preto:

odpoveď:

Po dokončení úlohy je vždy užitočné pozrieť sa na výkres a zistiť, či je odpoveď skutočná. V tomto prípade "od oka" počítame počet buniek na výkrese - dobre, asi 9 bude napísaných, zdá sa, že je to pravda. Je úplne jasné, že ak by sme mali povedzme odpoveď: 20 štvorcových jednotiek, tak sa, samozrejme, niekde stala chyba – 20 buniek sa do daného čísla zjavne nezmestí, nanajvýš tucet. Ak bola odpoveď záporná, úloha bola tiež vyriešená nesprávne.

Príklad 3

Vypočítajte plochu obrázku ohraničenú čiarami a súradnicovými osami.

Riešenie: Urobme kresbu:


Ak sa nachádza krivočiary lichobežník pod nápravou(alebo nakoniec nie vyššie danú os), potom jeho plochu možno nájsť podľa vzorca:


V tomto prípade:

Pozor! Nezamieňajte si tieto dva typy úloh:

1) Ak ste požiadaní, aby ste vyriešili len určitý integrál bez akéhokoľvek geometrického významu, potom môže byť záporný.

2) Ak ste požiadaní, aby ste našli plochu obrazca pomocou určitého integrálu, potom je plocha vždy kladná! Preto sa v práve uvažovanom vzorci objavuje mínus.

V praxi sa najčastejšie figúrka nachádza v hornej aj dolnej polrovine, a preto od najjednoduchších školských úloh prechádzame k zmysluplnejším príkladom.

Príklad 4

Nájdite plochu plochej postavy ohraničenú čiarami , .

Riešenie: Najprv musíte dokončiť výkres. Všeobecne povedané, pri konštrukcii výkresu v plošných úlohách nás najviac zaujímajú priesečníky čiar. Nájdite priesečníky paraboly a priamky. Dá sa to urobiť dvoma spôsobmi. Prvý spôsob je analytický. Riešime rovnicu:

Preto spodná hranica integrácie, horná hranica integrácie.

Ak je to možné, je lepšie túto metódu nepoužívať..

Oveľa výhodnejšie a rýchlejšie je stavať linky bod po bode, pričom hranice integrácie sa zistia akoby „sami od seba“. Analytická metóda hľadania limitov sa však stále niekedy musí použiť, ak je napríklad graf dostatočne veľký alebo závitová konštrukcia neodhalila limity integrácie (môžu byť zlomkové alebo iracionálne). A tiež zvážime taký príklad.

Vraciame sa k našej úlohe: racionálnejšie je najprv zostrojiť priamku a až potom parabolu. Urobme si kresbu:

A teraz pracovný vzorec: Ak je na intervale nejaká súvislá funkcia väčší alebo rovný nejaká spojitá funkcia, potom oblasť obrázku ohraničená grafmi týchto funkcií a priamkami, možno nájsť podľa vzorca:

Tu už nie je potrebné premýšľať, kde sa postava nachádza - nad osou alebo pod osou, a zhruba povedané, záleží na tom, ktorý graf je NAD(vo vzťahu k inému grafu), a ktorý je DOLE.

V uvažovanom príklade je zrejmé, že na segmente sa parabola nachádza nad priamkou, a preto je potrebné odpočítať od

Dokončenie riešenia môže vyzerať takto:

Požadovaný údaj je ohraničený parabolou zhora a priamkou zdola.
Na segmente podľa zodpovedajúceho vzorca:

odpoveď:

Príklad 4

Vypočítajte plochu obrázku ohraničenú čiarami , , , .

Riešenie: Najprv urobme kresbu:

Postava, ktorej oblasť potrebujeme nájsť, je vytieňovaná modrou farbou.(pozorne sa pozrite na stav - ako je postava obmedzená!). V praxi sa však v dôsledku nepozornosti často vyskytuje „závada“, že musíte nájsť oblasť postavy, ktorá je zatienená zelenou farbou!

Tento príklad je užitočný aj v tom, že sa v ňom plocha obrázku počíta pomocou dvoch určitých integrálov.

Naozaj:

1) Na segmente nad osou je priamkový graf;

2) Na segmente nad osou je hyperbolový graf.

Je celkom zrejmé, že oblasti sa môžu (a mali by) pridať, preto:

V tomto článku sa dozviete, ako nájsť oblasť obrázku ohraničenú čiarami pomocou integrálnych výpočtov. Prvýkrát sa s formulovaním takéhoto problému stretávame na strednej škole, keď je práve ukončené štúdium určitých integrálov a je čas začať s geometrickým výkladom získaných poznatkov v praxi.

Čo je teda potrebné na úspešné vyriešenie problému nájdenia oblasti obrázku pomocou integrálov:

  • Schopnosť správne kresliť kresby;
  • Schopnosť riešiť určitý integrál pomocou známeho Newtonovho-Leibnizovho vzorca;
  • Možnosť „vidieť“ výnosnejšie riešenie – t.j. pochopiť, ako bude v tomto alebo tom prípade pohodlnejšie vykonať integráciu? Pozdĺž osi x (OX) alebo osi y (OY)?
  • Kde bez správnych výpočtov?) To zahŕňa pochopenie toho, ako vyriešiť tento iný typ integrálov a správne numerické výpočty.

Algoritmus na riešenie problému výpočtu plochy obrazca ohraničeného čiarami:

1. Vytvárame výkres. Je vhodné to urobiť na kus papiera v klietke vo veľkom meradle. Ceruzkou nad každým grafom podpisujeme názov tejto funkcie. Podpis grafov sa vykonáva výlučne pre pohodlie ďalších výpočtov. Po prijatí grafu požadovaného čísla bude vo väčšine prípadov okamžite jasné, ktoré integračné limity sa použijú. Úlohu teda riešime graficky. Stáva sa však, že hodnoty limitov sú zlomkové alebo iracionálne. Preto môžete vykonať ďalšie výpočty, prejdite na druhý krok.

2. Ak integračné limity nie sú explicitne nastavené, nájdeme medzi sebou priesečníky grafov a uvidíme, či sa naše grafické riešenie zhoduje s analytickým.

3. Ďalej musíte analyzovať výkres. V závislosti od toho, ako sú umiestnené grafy funkcií, existujú rôzne prístupy k nájdeniu oblasti obrázku. Zvážte rôzne príklady hľadania oblasti obrazca pomocou integrálov.

3.1. Najklasickejšia a najjednoduchšia verzia problému je, keď potrebujete nájsť oblasť krivočiareho lichobežníka. Čo je to krivočiary lichobežník? Toto je plochý obrazec ohraničený osou x (y=0), rovný x = a, x = b a ľubovoľná krivka súvislá na intervale od a predtým b. Toto číslo zároveň nie je záporné a nenachádza sa nižšie ako os x. V tomto prípade sa plocha krivočiareho lichobežníka numericky rovná určitému integrálu vypočítanému pomocou vzorca Newton-Leibniz:

Príklad 1 y = x2 - 3x + 3, x = 1, x = 3, y = 0.

Aké čiary definujú postavu? Máme parabolu y = x2 - 3x + 3, ktorá sa nachádza nad osou OH, je nezáporné, pretože všetky body tejto paraboly sú kladné. Ďalej, dané rovné čiary x = 1 a x = 3 ktoré prebiehajú rovnobežne s osou OU, sú ohraničujúce čiary obrázku vľavo a vpravo. Dobre y = 0, ona je os x, ktorá obmedzuje postavu zdola. Výsledný obrázok je vytieňovaný, ako je vidieť na obrázku vľavo. V takom prípade môžete problém okamžite začať riešiť. Pred nami je jednoduchý príklad krivočiareho lichobežníka, ktorý potom riešime pomocou Newtonovho-Leibnizovho vzorca.

3.2. V predchádzajúcom odseku 3.1 bol analyzovaný prípad, keď je krivočiary lichobežník umiestnený nad osou x. Teraz zvážte prípad, keď sú podmienky problému rovnaké, okrem toho, že funkcia leží pod osou x. K štandardnému Newton-Leibnizovmu vzorcu sa pridáva mínus. Ako vyriešiť takýto problém, zvážime ďalej.

Príklad 2 . Vypočítajte plochu obrázku ohraničenú čiarami y=x2+6x+2, x=-4, x=-1, y=0.

V tomto príklade máme parabolu y=x2+6x+2, ktorý vychádza pod osou OH, rovný x=-4, x=-1, y=0. Tu y = 0 obmedzuje požadovanú hodnotu zhora. Priamy x = -4 a x = -1 toto sú hranice, v rámci ktorých sa bude počítať určitý integrál. Princíp riešenia problému nájdenia oblasti obrázku sa takmer úplne zhoduje s príkladom číslo 1. Jediný rozdiel je v tom, že daná funkcia nie je kladná a je tiež spojitá na intervale [-4; -1] . Čo neznamená pozitívne? Ako je zrejmé z obrázku, obrazec, ktorý leží v danom x, má výlučne „záporné“ súradnice, čo musíme vidieť a zapamätať si pri riešení úlohy. Hľadáme oblasť postavy pomocou vzorca Newton-Leibniz, iba so znamienkom mínus na začiatku.

Článok nie je dokončený.

Úloha číslo 3. Vytvorte nákres a vypočítajte plochu figúry ohraničenú čiarami

Aplikácia integrálu na riešenie aplikovaných problémov

Výpočet plochy

Určitý integrál spojitej nezápornej funkcie f(x) sa numericky rovná oblasť krivočiareho lichobežníka ohraničeného krivkou y \u003d f (x), osou O x a priamkami x \u003d a a x \u003d b. V súlade s tým je vzorec oblasti napísaný takto:

Zvážte niekoľko príkladov výpočtu plôch rovinných útvarov.

Číslo úlohy 1. Vypočítajte plochu ohraničenú čiarami y \u003d x 2 +1, y \u003d 0, x \u003d 0, x \u003d 2.

Riešenie. Zostavme postavu, ktorej plochu budeme musieť vypočítať.

y \u003d x 2 + 1 je parabola, ktorej vetvy smerujú nahor a parabola je posunutá nahor o jednu jednotku vzhľadom na os O y (obrázok 1).

Obrázok 1. Graf funkcie y = x 2 + 1

Úloha číslo 2. Vypočítajte plochu ohraničenú čiarami y \u003d x 2 - 1, y \u003d 0 v rozsahu od 0 do 1.


Riešenie. Grafom tejto funkcie je parabola vetvy, ktorá smeruje nahor, pričom parabola je voči osi O y posunutá nadol o jednu jednotku (obrázok 2).

Obrázok 2. Graf funkcie y \u003d x 2 - 1


Úloha číslo 3. Vytvorte nákres a vypočítajte plochu figúry ohraničenú čiarami

y = 8 + 2x - x 2 a y = 2x - 4.

Riešenie. Prvá z týchto dvoch čiar je parabola s vetvami smerujúcimi nadol, pretože koeficient na x 2 je záporný, a druhá čiara je priamka pretínajúca obe súradnicové osi.

Na zostrojenie paraboly nájdime súradnice jej vrcholu: y'=2 – 2x; 2 – 2x = 0, x = 1 – vrchol x os; y(1) = 8 + 2∙1 – 1 2 = 9 je jeho ordináta, N(1;9) je jeho vrchol.

Teraz nájdeme priesečníky paraboly a priamky riešením sústavy rovníc:

Vyrovnanie pravých strán rovnice, ktorej ľavé strany sú rovnaké.

Získame 8 + 2x - x 2 \u003d 2x - 4 alebo x 2 - 12 \u003d 0, odkiaľ .

Body sú teda priesečníky paraboly a priamky (obrázok 1).


Obrázok 3 Grafy funkcií y = 8 + 2x – x 2 a y = 2x – 4

Zostrojme priamku y = 2x - 4. Prechádza bodmi (0;-4), (2; 0) na súradnicových osiach.

Na zostavenie paraboly môžete mať aj jej priesečníky s osou 0x, teda korene rovnice 8 + 2x - x 2 = 0 alebo x 2 - 2x - 8 = 0. Podľa Vietovej vety je to ľahko nájsť jeho korene: x 1 = 2, x 2 = štyri.

Obrázok 3 zobrazuje obrazec (parabolický segment M1N M2) ohraničený týmito čiarami.

Druhou časťou problému je nájsť oblasť tohto obrázku. Jeho obsah možno nájsť pomocou určitého integrálu pomocou vzorca .

Vzhľadom na túto podmienku získame integrál:

2 Výpočet objemu rotačného telesa

Objem tela získaný z rotácie krivky y \u003d f (x) okolo osi O x sa vypočíta podľa vzorca:

Pri otáčaní okolo osi Oy vzorec vyzerá takto:

Úloha číslo 4. Určte objem tela získaného rotáciou krivočiareho lichobežníka ohraničeného priamkami x \u003d 0 x \u003d 3 a krivkou y \u003d okolo osi O x.

Riešenie. Zostavme výkres (obrázok 4).

Obrázok 4. Graf funkcie y =

Požadovaný objem sa rovná


Úloha číslo 5. Vypočítajte objem telesa získaný rotáciou krivočiareho lichobežníka ohraničeného krivkou y = x 2 a priamkami y = 0 a y = 4 okolo osi O y .

Riešenie. Máme:

Kontrolné otázky