The history of the creation of monuments of Donbass. Development of the lesson "historical monuments of Donbass" at the rate of "lessons of citizenship of Donbass"

Irina Sokolova
"The Magical Properties of Lemons". Research activities of preschoolers

Hello! My name is Sonya. And I'm Nikita.

SONIA Mom at the market bought lemons,

This purchase surprised me.

Has a wonderful smell lemon,

With a skin yellow and porous it.

Only, friends, I will open secret:

There is probably no sour fruit!

I asked my mom:

"How lemons are healthy?

I know about lemons are interesting

Mom said: We have no barriers.

The internet will give us all the answers.

We found many unknowns there:

O properties of lemons articles are interesting,

Materials for study,

Experiences, games and fun!

What about learned the properties of lemons,

Nikita told everything in the garden.

Decided with we play with lemons

And some experiences to show you.

NIKITA EXPERIENCE FIRST

Strong tea was poured into glasses.

Into one the lemon was lowered.

The color has changed, become lighter.

Tea is more fragrant, tastier!

CONCLUSION: There are substances in tea leaves that color hot water. BUT lemon creates an acidic environment, and the tea brightens.

SONIA EXPERIENCE SECOND

Paint got on the fabric from the felt-tip pen

juice pour lemon without fear.

He will help us remove the stain ...

The stain is gone! So this is a miracle lemon!

Citric the juice can serve as a safe stain remover.

NIKITA. EXPERIENCE THREE

Let's take the juice lemon and toothpick,

Write a note on a white piece of paper.

Juice will be in the role of colorless ink

This is what my dad taught me!

We heat the leaf with a hot iron

Juice lemon darkens when heated

SONIA EXPERIENCE FOUR

We will inflate a simple balloon

Reaction with soda and acidic water.

We put a ball on the neck of the vessel,

And we launch our reaction!

Carbon dioxide gas inflates our balloon

And the ball, like a rocket, takes off into the sky!

Citric juice and soda in the reaction release carbon dioxide.

When we blow up a balloon with our mouth, we also release carbon dioxide.

NIKITA EXPERIENCE FIVE

With dad, we study physics,

And current out this is how we get lemons:

A copper coin and a small nail -

Let's pierce a cut with them lemon through and through,

We connect the ends of the voltmeter,

And we get electricity.

Acid lemon and iron oxide generate current.

SONIA EXPERIENCE SEVEN

Let's cut the apple. And half

Sprinkle with lemon juice.

Let it lie, then we'll see

And we will compare both parts.

NIKITA Eighth experience. Let's clean up lemon.

Let the other one remain in the shell.

Which one is easier? Who can say?

We can show everything by experience.

O! Miracle, our heavy lemon without clothes,

He sank to the bottom undisturbed.

A whole, what, easier? He floats up.

Does this happen in nature?

Loose and porous crust cover.

Lots of air bubbles in it.

They raise lemon over water.

As you can see, our experience is very simple!

Air is always lighter than water. He holds lemon on the surface.

SONIA Let's get back to the apples. See -

Remained white on the cut!

That half - darkened,

After all, iron was oxidized in it!

Citric juice protects the apple from oxidation.

SONIA We studied the properties of lemons

We have a lot of new things about them learned:

NIKITA They are used in cooking,

They put it in medicines so that they are not bitter.

They are used in everyday life and cosmetics.

They are added to drinks and jams.

NIKITA We have prepared lemonade.

They were treated to a group of guys.

SONIA Lemon we serve you a cocktail.

We wish good and health to all of you!

HOROM:

Thank you for your attention

Related publications:

Game experimental research activity "Magic Bubbles" in the middle group Purpose: Formation of skills to obtain information about a new object in the process of its practical research. (To form cognitive-research.

Research activities in ecology in the middle group "Air and its properties" Program content:1. Learn to find air in the environment. 2. Introduce the properties of air during the experiment.

Cognitive and research activities of older preschoolers through museum pedagogy We give children not the results of other people's searches, but we lead them along the path of searches ... " Small child essentially a tireless explorer. He wants everything.

Research activities of preschoolers "The extraordinary world of magnets" Purpose: To develop the cognitive activity of the child in the process of getting to know the properties of magnets. Tasks: Introduce the concept of "magnet". Form.

The teacher's self-education program "Search and research activities of preschoolers" Self-education program on the topic "Search and research activities of preschoolers" Topic: Search and research activities.

"The Amazing Properties of a Magnet". Cognitive research activity summary of cognitive research activities preparatory group No. 4 (6-7 years old) topic "Amazing properties of a magnet."

Speech at the parent workshop "Cognitive and research activities of preschoolers" Speech at the parent seminar - workshop "Cognitive and research activities of preschoolers" Performed by: educator of the highest.

Who didn't believe in miracles as a child? To have fun and informative time with your baby, you can try to carry out experiments from entertaining chemistry. They are safe, interesting and educational. These experiments will answer many children's "why" and arouse interest in science and knowledge of the world. And today I want to tell you what experiments for children at home can be organized by parents.

pharaoh snake


This experiment is based on increasing the volume of the mixed reagents. In the process of burning, they transform and, wriggling, resemble a snake. The experiment got its name thanks to the biblical miracle, when Moses, who came to the pharaoh with a request, turned his rod into a snake.

For the experience you will need the following ingredients:

  • ordinary sand;
  • ethanol;
  • crushed sugar;
  • baking soda.

We impregnate the sand with alcohol, after that we form a small hill out of it and make a recess at the top. After that, mix a small spoonful of powdered sugar and a pinch of soda, then pour everything into an impromptu "crater". We set fire to our volcano, the alcohol in the sand begins to burn out, and black balls form. They are a decomposition product of soda and caramelized sugar.

After all the alcohol has burned out, the sand slide will turn black and a writhing "black pharaoh's snake" will form. This experiment looks more impressive with the use of real reagents and strong acids, which can only be used in a chemical laboratory.

You can do it a little easier and buy a calcium gluconate tablet at the pharmacy. Set it on fire at home, the effect will be almost the same, only the “snake” will quickly collapse.

Magic lamp


In stores, you can often see lamps, inside which a beautiful illuminated liquid moves and shimmers. Such lamps were invented in the early 60s. They work on the basis of paraffin and oil. At the bottom of the device is a built-in conventional incandescent lamp that heats the descending molten wax. Part of it reaches the top and falls, the other part heats up and rises, so we see a kind of “dance” of paraffin inside the container.

In order to carry out a similar experience at home with a child, we need:

  • any juice;
  • vegetable oil;
  • tablets - pops;
  • beautiful container.

We take a container and fill it with juice more than half. Add vegetable oil on top and throw a pop-up tablet there. It begins to “work”, the bubbles rising from the bottom of the glass capture the juice in themselves and form a beautiful seething in the oil layer. Then the bubbles that reach the edge of the glass burst, and the juice falls down. It turns out a kind of "cycle" of juice in a glass. Such magic lamps are absolutely harmless, unlike paraffin lamps, which a child can accidentally break and burn himself.

Balloon and Orange: An Experience for Toddlers


What will happen to a balloon if you drop orange or lemon juice on it? It will burst as soon as drops of citrus touch it. And then you can eat an orange with your baby. It's very entertaining and fun. For the experience, we need a couple of balloons and citrus. We inflate them and let the baby drip fruit juice on each and see what happens.

Why does the ball burst? It's all about a special chemical - limonene. It is found in citrus fruits and is often used in the cosmetics industry. When the juice comes into contact with the rubber of the balloon, a reaction occurs, limonene dissolves the rubber and the balloon bursts.

sweet glass

Amazing things can be made from caramelized sugar. In the early days of cinema, most fight scenes used this edible sweet glass. This is because it is less traumatic for actors during filming and is inexpensive. Its fragments can then be collected, melted down and made into props for the film.

Many in childhood made sugar cockerels or fudge, glass should be made according to the same principle. Pour water into a saucepan, heat a little, the water should not be cold. After that, pour sugar into it and bring to a boil. When the liquid boils, cook until the mass begins to gradually thicken and bubble strongly. The melted sugar in the container should turn into a viscous caramel, which, if lowered into cold water, will turn into glass.

Pour the prepared liquid onto a baking sheet previously prepared and greased with vegetable oil, cool and the sweet glass is ready.

During the cooking process, you can add dye to it and pour it into some interesting shape, and then treat and surprise everyone around.

Philosopher's nail


This entertaining experience based on the principle of iron coppering. Named by analogy with a substance that, according to legend, could turn everything into gold, and was called the philosopher's stone. To conduct the experiment, we will need:

  • iron nail;
  • a fourth of a glass of acetic acid;
  • food salt;
  • soda;
  • a piece of copper wire;
  • glass container.

We take glass jar and pour acid, salt there and stir well. Be careful, vinegar has a strong unpleasant odor. It can burn the baby's delicate airways. Then we put the copper wire into the resulting solution for 10-15 minutes, after some time we lower the iron nail previously cleaned with soda into the solution. After some time, we can see that a copper coating has appeared on it, and the wire has become shiny as new. How could this happen?

Copper reacts with acetic acid, a copper salt is formed, then copper ions on the surface of the nail change places with iron ions and form a plaque on its surface. And the concentration of iron salts increases in the solution.

Copper coins are not suitable for the experiment, since this metal itself is very soft, and to make the money stronger, its alloys with brass and aluminum are used.

Copper products do not rust over time, they are covered with a special green coating - patina, which prevents it from further corrosion.

DIY soap bubbles

Who didn't love blowing bubbles as a child? How beautifully they shimmer and burst merrily. You can just buy them at the store, but it will be much more interesting to create your own solution with your child and then blow bubbles.

It should be said right away that the usual mixture of laundry soap and water will not work. It produces bubbles that quickly disappear and are poorly blown. The most affordable way to prepare such a substance is to mix two glasses of water with a glass of dish detergent. If sugar is added to the solution, then the bubbles become stronger. They will fly for a long time and will not burst. And the huge bubbles that can be seen on stage with professional artists are obtained by mixing glycerin, water and detergent.

For beauty and mood, you can mix food paint into the solution. Then the bubbles will glow beautifully in the sun. You can create several different solutions and take turns using them with your child. It is interesting to experiment with color, and create your own, new shade soap bubbles.

You can also try mixing the soap solution with other substances and see how they affect the blisters. Maybe you will invent and patent some new kind of your own.

Spy ink

This legendary invisible ink. What are they made from? Now there are so many films about spies and interesting intellectual investigations. You can invite your child to play a little secret agents.

The meaning of such ink is that they cannot be seen on paper with the naked eye. Only by applying a special effect, for example, heating or chemical reagents, can a secret message be seen. Unfortunately, most recipes for making them are ineffective and such ink leaves marks.

We will make special ones that are difficult to see without special identification. For this you will need:

  • water;
  • a spoon;
  • baking soda;
  • any source of heat;
  • stick with cotton at the end.

Pour warm liquid into any container, then, while stirring, pour baking soda into it until it stops dissolving, i.e. the mixture will reach a high concentration. We put a stick with cotton on the end there and write something on paper with it. Let's wait until it dries, then bring the leaf to a lit candle or gas stove. After a while, you can see how the yellow letters of the written word appear on the paper. Make sure that during the development of the letters the leaf does not catch fire.

Fireproof money

This is a well-known and old experiment. For it you will need:

  • water;
  • alcohol;
  • salt.

Take a deep glass container and pour water into it, then add alcohol and salt, stir well so that all the ingredients are dissolved. For ignition, you can take ordinary pieces of paper, if you don’t mind, then you can take a bill. Just take a small denomination, otherwise something may go wrong in the experience and the money will be spoiled.

Put strips of paper or money in a water-salt solution, after a while they can be removed from the liquid and set on fire. You can see that the flame covers the entire banknote, but it does not light up. This effect is explained by the fact that the alcohol in the solution evaporates, and the wet paper itself does not light up.

wish fulfilling stone


The process of growing crystals is very exciting, but time consuming. However, what you get as a result will be worth the time spent. The most popular is the creation of crystals from table salt or sugar.

Consider growing a "wish stone" from refined sugar. For this you will need:

  • drinking water;
  • granulated sugar;
  • paper sheet;
  • thin wooden stick;
  • small container and glass.

Let's make a preparation first. To do this, we need to prepare a sugar mixture. Pour some water and sugar into a small container. We wait until the mixture boils, and boil until a syrupy state is formed. Then we lower the wooden stick there and sprinkle it with sugar, you need to do this evenly, in this case the resulting crystal will become more beautiful and even. Leave the base for the crystal overnight to dry and harden.

Let's prepare the syrup solution. Pour water into a large container and fall asleep, slowly stirring, sugar there. Then, when the mixture boils, boil it to the state of a viscous syrup. Remove from fire and let cool.

Cut out circles from paper and attach them to the end of a wooden stick. It will become a lid on which a wand with crystals is attached. We fill the glass with a solution and lower the workpiece there. We wait for a week, and the "stone of desires" is ready. If you put a dye in the syrup when cooking, it will turn out even more beautiful.

The process of creating crystals from salt is somewhat simpler. Here it will only be necessary to monitor the mixture and periodically change it in order to increase the concentration.

First of all, we create a blank. Pour warm water into a glass container, and gradually stir, pour salt until it stops dissolving. We leave the container for a day. After this time, you can find many small crystals in the glass, choose the largest one and tie it to a thread. Make a new salt solution and put a crystal there, it must not touch the bottom or the edges of the glass. This can lead to unwanted deformations.

After a couple of days, you can see that he has grown. The more often you change the mixture, increasing the concentration of salt content, the faster you can grow your wish stone.

glowing tomato


This experiment must be carried out strictly under the supervision of adults, since harmful substances are used for its implementation. The glowing tomato that will be created during this experiment is strictly forbidden to eat, it can lead to death or severe poisoning. We will need:

  • ordinary tomato;
  • syringe;
  • sulfuric matter from matches;
  • bleach;
  • hydrogen peroxide.

We take a small container, put the previously prepared match sulfur there and pour in the bleach. We leave all this for a while, after which we collect the mixture into a syringe and introduce it into the tomato from different sides, so that it glows evenly. To start the chemical process, hydrogen peroxide is needed, which we introduce through the trace from the petiole from above. We turn off the light in the room, and we can enjoy the process.

Egg in Vinegar: A Very Simple Experience

This is a simple and interesting ordinary acetic acid. For its implementation, you will need a boiled chicken egg and vinegar. Take a transparent glass container and lower the egg in the shell into it, then fill it to the top with acetic acid. You can see how bubbles rise from its surface, this is a chemical reaction. After three days, we can observe that the shell has become soft, and the egg is elastic, like a ball. If you point a flashlight at it, you can see that it glows. It is not recommended to conduct an experiment with a raw egg, since the soft shell may break when squeezed.

Do-it-yourself slime from PVA


This is a fairly common strange toy of our childhood. Currently, it is quite difficult to find it. Let's try to make slime at home. Its classic color is green, but you can use whatever you like. Try mixing several shades and create your own unique color.

For the experiment we need:

  • glass jar;
  • several small glasses;
  • dye;
  • PVA glue;
  • regular starch.

Let's prepare three identical glasses with solutions that we will mix. Pour PVA glue into the first, water into the second, and starch into the third. First, pour water into the jar, then add glue and dye, mix everything thoroughly and then add starch. The mixture must be quickly mixed so that it does not thicken, and you can play with the finished slime.

How to quickly inflate a balloon

Soon the holiday and you need to inflate a lot of balloons? What to do? This unusual experience will help to facilitate the task. For him, we need a rubber ball, acetic acid and ordinary soda. It must be carried out carefully in the presence of adults.

Pour a pinch of baking soda into a balloon and put it on the neck of the bottle of acetic acid so that the soda does not spill out, straighten the balloon and let its contents fall into the vinegar. You will see how the chemical reaction will take place, it will begin to foam, releasing carbon dioxide and inflating the balloon.

That's all for today. Do not forget that it is better to conduct experiments for children at home under supervision, it will be both safer and more interesting. See you soon!

Helpful Hints

Children are always trying to find out something new every day and they always have a lot of questions.

They can explain some phenomena, or you can show how this or that thing, this or that phenomenon works.

In these experiments, children not only learn something new, but also learn create differentcrafts with which they can play further.


1. Experiments for children: lemon volcano


You will need:

2 lemons (for 1 volcano)

Baking soda

Food coloring or watercolors

Dishwashing liquid

Wooden stick or spoon (optional)


1. Cut off the bottom of the lemon so it can be placed on a flat surface.

2. On the reverse side, cut a piece of lemon as shown in the image.

* You can cut half a lemon and make an open volcano.


3. Take the second lemon, cut it in half and squeeze the juice out of it into a cup. This will be the backup lemon juice.

4. Place the first lemon (with the part cut out) on the tray and spoon "remember" the lemon inside to squeeze out some of the juice. It is important that the juice is inside the lemon.

5. Add food coloring or watercolor to the inside of the lemon, but do not stir.


6. Pour dishwashing liquid inside the lemon.

7. Add a full tablespoon of baking soda to the lemon. The reaction will start. With a stick or spoon, you can stir everything inside the lemon - the volcano will begin to foam.


8. To make the reaction last longer, you can gradually add more soda, dyes, soap and reserve lemon juice.

2. Home experiments for children: electric eels from chewing worms


You will need:

2 glasses

small capacity

4-6 chewable worms

3 tablespoons of baking soda

1/2 spoon of vinegar

1 cup water

Scissors, kitchen or clerical knife.

1. With scissors or a knife, cut lengthwise (just lengthwise - this will not be easy, but be patient) of each worm into 4 (or more) parts.

* The smaller the piece, the better.

* If scissors don't want to cut properly, try washing them with soap and water.


2. Mix water and baking soda in a glass.

3. Add pieces of worms to the solution of water and soda and stir.

4. Leave the worms in the solution for 10-15 minutes.

5. Using a fork, transfer the worm pieces to a small plate.

6. Pour half a spoon of vinegar into an empty glass and start putting worms in it one by one.


* The experiment can be repeated if the worms are washed with plain water. After a few attempts, your worms will begin to dissolve, and then you will have to cut a new batch.

3. Experiments and experiments: a rainbow on paper or how light is reflected on a flat surface


You will need:

bowl of water

Clear nail polish

Small pieces of black paper.

1. Add 1-2 drops of clear nail polish to a bowl of water. See how the varnish disperses through the water.

2. Quickly (after 10 seconds) dip a piece of black paper into the bowl. Take it out and let it dry on a paper towel.

3. After the paper has dried (it happens quickly) start turning the paper and look at the rainbow that is displayed on it.

* To better see the rainbow on paper, look at it under the sun's rays.



4. Experiments at home: a rain cloud in a jar


When small drops of water accumulate in a cloud, they become heavier and heavier. As a result, they will reach such a weight that they can no longer remain in the air and will begin to fall to the ground - this is how rain appears.

This phenomenon can be shown to children with simple materials.

You will need:

Shaving foam

Food coloring.

1. Fill the jar with water.

2. Apply shaving foam on top - it will be a cloud.

3. Let the child begin to drip food coloring onto the "cloud" until it starts to "rain" - drops of food coloring begin to fall to the bottom of the jar.

During the experiment, explain this phenomenon to the child.

You will need:

warm water

Sunflower oil

4 food coloring

1. Fill the jar 3/4 full with warm water.

2. Take a bowl and mix 3-4 tablespoons of oil and a few drops of food coloring in it. In this example, 1 drop of each of 4 dyes was used - red, yellow, blue and green.


3. Stir the dyes and oil with a fork.


4. Carefully pour the mixture into a jar of warm water.


5. Watch what happens - the food coloring will begin to slowly sink through the oil into the water, after which each drop will begin to disperse and mix with other drops.

* Food coloring dissolves in water, but not in oil, because. The density of oil is less than water (which is why it "floats" on water). A drop of dye is heavier than oil, so it will begin to sink until it reaches the water, where it begins to disperse and look like a small firework.

6. Interesting experiences: ina bowl in which colors merge

You will need:

- a printout of the wheel (or you can cut out your own wheel and draw all the colors of the rainbow on it)

Elastic band or thick thread

Glue stick

Scissors

A skewer or screwdriver (to make holes in the paper wheel).


1. Choose and print the two templates you want to use.


2. Take a piece of cardboard and use a glue stick to glue one template to the cardboard.

3. Cut out the glued circle from the cardboard.

4. Glue the second template to the back of the cardboard circle.

5. Use a skewer or screwdriver to make two holes in the circle.


6. Pass the thread through the holes and tie the ends into a knot.

Now you can spin your spinning top and watch how the colors merge on the circles.



7. Experiments for children at home: jellyfish in a jar


You will need:

Small transparent plastic bag

Transparent plastic bottle

Food coloring

Scissors.


1. Lay the plastic bag on a flat surface and smooth it out.

2. Cut off the bottom and handles of the bag.

3. Cut the bag lengthwise on the right and left so that you have two sheets of polyethylene. You will need one sheet.

4. Find the center of the plastic sheet and fold it like a ball to make a jellyfish head. Tie the thread around the "neck" of the jellyfish, but not too tight - you need to leave a small hole through which to pour water into the head of the jellyfish.

5. There is a head, now let's move on to the tentacles. Make cuts in the sheet - from the bottom to the head. You need about 8-10 tentacles.

6. Cut each tentacle into 3-4 smaller pieces.


7. Pour some water into the jellyfish's head, leaving room for air so the jellyfish can "float" in the bottle.

8. Fill the bottle with water and put your jellyfish in it.


9. Drop a couple of drops of blue or green food coloring.

* Close the lid tightly so that water does not spill out.

* Have the children turn the bottle over and watch the jellyfish swim in it.

8. Chemical experiments: magic crystals in a glass


You will need:

Glass cup or bowl

plastic bowl

1 cup Epsom salt (magnesium sulfate) - used in bath salts

1 cup hot water

Food coloring.

1. Pour Epsom salt into a bowl and add hot water. You can add a couple of drops of food coloring to the bowl.

2. Stir the contents of the bowl for 1-2 minutes. Most of the salt granules should dissolve.


3. Pour the solution into a glass or glass and place it in the freezer for 10-15 minutes. Don't worry, the solution isn't hot enough to crack the glass.

4. After freezing, move the solution to the main compartment of the refrigerator, preferably on the top shelf and leave overnight.


The growth of crystals will be noticeable only after a few hours, but it is better to wait out the night.

This is what the crystals look like the next day. Remember that crystals are very fragile. If you touch them, they are most likely to break or crumble immediately.


9. Experiments for children (video): soap cube

10. Chemical experiments for children (video): how to make a lava lamp with your own hands

Summary: Chemical experience - invisible ink. Experiments with citric acid and soda. Experiments with surface tension on water. Mighty shell. Teach an egg to swim. Animation. Experiments with optical illusions.

Does your kid love everything mysterious, mysterious and unusual? Then be sure to conduct with him the simple, but very interesting experiments described in this article. Most of them will surprise and even puzzle the child, give him the opportunity to see for himself in practice the unusual properties of ordinary objects, phenomena, their interaction with each other, understand the cause of what is happening and thereby gain practical experience.

Your son or daughter will certainly earn the respect of their peers by showing them experiences as tricks. For example, they can make cold water "boil" or use a lemon to launch a homemade rocket. Such entertainment can be included in the birthday program for children of preschool and primary school age.

invisible ink

To conduct the experiment, you will need: half a lemon, cotton wool, a match, a cup of water, a sheet of paper.
1. Squeeze the juice from the lemon into a cup, add the same amount of water.
2. Let's dip a match or a toothpick with wound cotton wool in a solution of lemon juice and water and write something on paper with this match.
3. When the "ink" is dry, heat the paper over the included desk lamp. Previously invisible words will appear on paper.

Lemon inflates a balloon

For the experience you will need: 1 tsp baking soda, lemon juice, 3 tbsp. vinegar, balloon, electrical tape, glass and bottle, funnel.
1. Pour water into a bottle and dissolve a teaspoon of baking soda in it.

2. In a separate bowl, mix lemon juice and 3 tablespoons of vinegar and pour into a bottle through a funnel.

3. Quickly put the ball on the neck of the bottle and secure it tightly with electrical tape.
See what's happening! The baking soda and lemon juice mixed with vinegar react chemically, releasing carbon dioxide and creating pressure that inflates the balloon.

Lemon launches a rocket into space

For the experiment you will need: a bottle (glass), a cork from a wine bottle, colored paper, glue, 3 tbsp lemon juice, 1 tsp. baking soda, a piece of toilet paper.

1. Cut out from colored paper and glue strips of paper on both sides of the wine cork so that you get a rocket model. We try on the "rocket" on the bottle so that the cork enters the neck of the bottle without effort.

2. Pour and mix water and lemon juice in a bottle.

3. Wrap baking soda in a piece of toilet paper so that you can stick it into the neck of the bottle and wrap it with thread.

4. We lower the bag of soda into the bottle and plug it with a rocket cork, but not too tightly.

5. We put the bottle on a plane and move to a safe distance. Our rocket with a loud bang will fly up. Just don't put it under a chandelier!

Scattering toothpicks

To conduct the experiment, you will need: a bowl of water, 8 wooden toothpicks, a pipette, a piece of refined sugar (not instant), dishwashing liquid.

1. We have toothpicks with rays in a bowl of water.

2. Gently lower a piece of sugar into the center of the bowl - the toothpicks will begin to gather towards the center.
3. Remove the sugar with a teaspoon and drop a few drops of dishwashing liquid into the center of the bowl with a pipette - the toothpicks will “scatter”!
What is going on? The sugar sucks up the water, creating a movement that moves the toothpicks toward the center. Soap, spreading over the water, drags particles of water with it, and they cause the toothpicks to scatter. Explain to the children that you showed them a trick, and all tricks are based on certain natural physical phenomena that they will study in school.

mighty shell

For the experiment you will need: 4 halves eggshell, scissors, narrow sticky tape, several full cans.
1. Wrap duct tape around the middle of each eggshell half.

2. Cut off the excess shell with scissors so that the edges are even.

3. Put the four halves of the shell with the dome up so that they make a square.
4. Carefully put a jar on top, then another and another ... until the shell bursts.

The weight of how many jars could withstand the fragile shells? Add up the weights indicated on the labels and find out how many cans you can put in order to complete the trick. The secret of strength is in the domed shape of the shell.

teach an egg to swim

For the experiment you will need: a raw egg, a glass of water, a few tablespoons of salt.
1. Put a raw egg in a glass of clean tap water - the egg will sink to the bottom of the glass.
2. Take the egg out of the glass and dissolve a few tablespoons of salt in the water.
3. Dip the egg into a glass of salt water - the egg will remain floating on the surface of the water.

Salt increases the density of water. The more salt in the water, the more difficult it is to drown in it. In the famous Dead Sea, the water is so salty that a person without any effort can lie on its surface without fear of drowning.

"Bait" for ice

To conduct the experiment, you will need: a thread, an ice cube, a glass of water, a pinch of salt.

Bet a friend that you can use a string to pull an ice cube out of a glass of water without getting your hands wet.

1. Dip the ice into the water.

2. Put the thread on the edge of the glass so that it lies at one end on an ice cube floating on the surface of the water.

3. Pour some salt on the ice and wait 5-10 minutes.
4. Take the free end of the thread and pull the ice cube out of the glass.

Salt, hitting the ice, slightly melts a small area of ​​it. Within 5-10 minutes, the salt dissolves in water, and pure water on the surface of the ice freezes together with the thread.

Can cold water "boil"?

To conduct the experiment, you will need: a thick handkerchief, a glass of water, pharmaceutical gum.

1. Wet and wring out a handkerchief.

2. Pour a full glass of cold water.

3. Cover the glass with a handkerchief and fix it on the glass with a rubber band.

4. Push the middle of the scarf with your finger so that it is 2-3 cm immersed in water.
5. Turn the glass over the sink upside down.
6. With one hand we hold a glass, with the other we lightly hit its bottom. The water in the glass starts bubbling ("boiling").
A wet handkerchief does not let water through. When we hit the glass, a vacuum is formed in it, and air through the handkerchief begins to flow into the water, sucked in by the vacuum. It is these air bubbles that give the impression that the water is "boiling".

Straw pipette

For the experiment you will need: a straw for a cocktail, 2 glasses.

1. Put 2 glasses side by side: one with water, the other empty.

2. Dip the straw into the water.

3. Hold down index finger straw on top and transfer to an empty glass.

4. Remove your finger from the straw - water will flow into an empty glass. By doing the same several times, we can transfer all the water from one glass to another.

The pipette, which is probably in your home first aid kit, works on the same principle.

straw flute

For the experiment you will need: a wide straw for a cocktail and scissors.
1. Flatten the end of a straw about 15 mm long and cut its edges with scissors.
2. From the other end of the straw, cut 3 small holes at the same distance from each other.
This is how the "flute" came about. If you lightly blow into the straw, slightly squeezing it with your teeth, the "flute" will start to sound. If you close one or the other hole of the "flute" with your fingers, the sound will change. And now let's try to pick up some melody.

Rapier Straw

For the experiment, you will need: a raw potato and 2 thin straws for a cocktail.
1. Put the potatoes on the table. Clamp the straw in your fist and with a sharp movement try to stick the straw into the potato. The straw will bend, but it will not pierce the potato.
2. Take the second straw. Close the hole at the top with your thumb.

3. Drop the straw sharply. She will easily enter the potato and pierce it.

The air that we squeezed with our thumb inside the straw makes it elastic and does not allow it to bend, so it easily pierces the potato.

bird in a cage

To conduct the experiment, you will need: a piece of thick cardboard, compasses, scissors, colored pencils or felt-tip pens, thick threads, a needle and a ruler.
1. Cut out a circle of any diameter from cardboard.
2. We pierce two holes on the circle with a needle.
3. Through the holes on each side we will draw a thread about 50 cm long.
4. Draw a bird cage on the front side of the circle, and a small bird on the back side.
5. We rotate the cardboard circle, holding it by the ends of the threads. The threads will twist. Now let's pull their ends in different sides. The threads will unwind and rotate the circle in reverse side. It looks like the bird is in a cage. An animation effect is created, the rotation of the circle becomes invisible, and the bird "turns out" in a cage.

How does a square turn into a circle?

To conduct the experiment, you will need: a rectangular cardboard, a pencil, a felt-tip pen and a ruler.
1. Put the ruler on the cardboard so that with one end it touches its corner, and with the other - the middle of the opposite side.
2. We put 25-30 dots on a cardboard with a felt-tip pen at a distance of 0.5 mm from each other.
3. Pierce the middle of the cardboard with a sharp pencil (the middle will be the intersection of the diagonal lines).
4. Rest the pencil vertically on the table, holding it with your hand. The cardboard should rotate freely on the tip of the pencil.
5. Unroll the cardboard.
A circle appears on a rotating cardboard. This is just a visual effect. Each dot on the cardboard rotates in a circle, as if creating a continuous line. The point closest to the tip moves the slowest, and we perceive its trace as a circle.

strong newspaper

For the experiment you will need: a long ruler and a newspaper.
1. Put the ruler on the table so that it hangs halfway.
2. Fold the newspaper several times, put it on the ruler, hit hard on the hanging end of the ruler. The newspaper will fly off the table.
3. And now let's unfold the newspaper and cover the ruler with it, hit the ruler. The newspaper will only rise slightly, but will not fly away anywhere.
What is the focus? All objects experience air pressure. The larger the area of ​​the object, the stronger this pressure. Now it is clear why the newspaper has become so strong?

Mighty Breath

To conduct the experiment, you will need: a clothes hanger, strong threads, a book.
1. Tie a book with thread to a clothes hanger.
2. Hang the hanger on a clothesline.
3. We will stand near the book at a distance of approximately 30 cm. We will blow on the book with all our might. It will deviate slightly from its original position.
4. Now let's blow on the book again, but lightly. As soon as the book deviates a little, we blow after it. And so several times.
It turns out that such repeated light blows can move the book much further than once strongly blowing on it.

Record weight

To conduct the experiment, you will need: 2 tins of coffee or canned food, a sheet of paper, an empty glass jar.
1. Place two tin cans at a distance of 30 cm from each other.
2. Put a sheet of paper on top to make a "bridge".
3. Put an empty glass jar on the sheet. The paper will not support the weight of the can and will bend down.
4. Now fold a sheet of paper with an accordion.
5. Put this "harmonica" on two tin cans and put a glass jar on it. The accordion does not bend!