Неизменные частицы. Фундаментальные взаимодействия Существует ли в природе неизвестные частицы

Урок № 67.

Тема урока : Проблемы элементарных частиц

Цели урока:

Образовательные: познакомить учащихся с понятием - элементарная частица, с классификацией элементарных частиц, обобщить и закрепить знания об фундаментальных видах взаимодействий, формировать научное мировоззрение.

Воспитательные: формировать познавательный интерес к физике, привитие любви и уважения к достижениям науки.

Развивающие: развитие любознательности, умение анализировать, самостоятельно формулировать выводы, развитие речи, мышления.

Оборудование: интерактивная доска (или проектор с экраном).

Тип урока: изучение нового материала.

Вид урока: лекция

Ход урока:

    Организационный этап

    Изучение новой темы.

В природе существуют 4 типа фундаментальных (основных) взаимодействий: гравитационное, электромагнитное, сильное и слабое. По современным представлениям взаимодействие между телами осуществляется через поля, окружающие эти тела. Само поле в квантовой теории понимается как совокупность квантов. Каждый тип взаимодействия имеет своих переносчиков взаимодействия и сводится к поглощению и испусканию частицами соответствующих квантов света.

Взаимодействия могут быть длиннодействующие (проявляются на очень больших расстояниях) и короткодействующие (проявляются а очень малых расстояниях).

    Гравитационное взаимодействие осуществляется посредством обмена гравитонами. Экспериментально они не обнаружены. Согласно закону, открытому в 1687 году великим английским ученым Исааком Ньютоном, все тела независимо от формы и размеров притягиваются друг другу с силой, прямо пропорциональной их массе и обратно пропорциональна квадрату расстояния между ними. Гравитационное взаимодействие всегда приводит к притяжению тел.

    Электромагнитное взаимодействие является длиннодействующим. В отличие от гравитационного взаимодействия, электромагнитное взаимодействие может привести как к притяжению, так и к отталкиванию. Переносчиками электромагнитного взаимодействия являются кванты электромагнитного поля – фотонами. В результате обмена этими частицами и возникает электромагнитное взаимодействие между заряженными телами.

    Сильное взаимодействие – это самые мощное из всех взаимодействий. Оно является короткодействующим, соответствующие силы очень быстро убывают по мере увеличения расстояния между ними. Радиус действия ядерных сил 10 -13 см

    Слабое взаимодействие проявляется на очень малых расстояниях. Радиус действия примерно в 1000 раз меньше, сем у ядерных сил.

Открытие радиоактивности и результаты опытов Резерфорда убедительно показали, что атомы состоят из частиц. Как было установлено, они состоят из электронов, протонов и нейтронов. Первое время частицы, из которых построены атомы, считались неделимыми. Поэтому их назвали элементарными частицами. Представление о «простом» устройстве мира разрушилось, когда в 1932 году открыли античастицу электрона – частицу, которая имела макую же массу, что и электрон, но отличается от него знаком электрического заряда. Эту положительно заряженную частицу назвали позитроном.. согласно современным представлениям у каждой частицы есть античастица. Частица и античастица имеют одинаковою массу, но противоположные знаки всех зарядов. Если античастица совпадает с самой частицей, то такие частицы называют истинно нейтральными, заряд их равен 0. Например, фотон. Частица и античастица при столкновении аннигилируют, то есть исчезают, превращаясь в другие частицы (часто этими частицами является фотон).

Все элементарные частицы (которые нельзя разделить на составные) делятся на 2 группы: фундаментальные (бесструкaтурные частицы, все фундаментальные частицы на данном этапе развития физики считаются бесструктурными, то есть не состоят из других частиц) и адроны (частицы, имеющие сложное строение).

Фундаментальные частицы в свою очередь делятся на лептоны, кварки и переносчики взаимодействий. Адроны делятся на барионы и мезоны. К лептонам относятся электрон, позитрон, мьюон, таон, три типа нейтрино.

К кварками называют частицы, из которых состоят все адроны. Участвуют в сильном взаимодействии.

Согласно современным представлениям, каждое из взаимодействий возникает в результате обмена частицами, называемые переносчиками этого взаимодействия: фотон (частица, переносящая электромагнитное взаимодействие), восемь глюонов (частиц, переносящих сильное взаимодействие), три промежуточных векторных бозона W + , W − и Z 0 , переносящие слабое взаимодействие, гравитон (переносчик гравитационного взаимодействия). Существование гравитонов пока не доказано экспериментально.

Адроны участвуют во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на: барионы, состоящие из трех кварков, и мезоны, состоящие из двух кварков, один из которых является антикварком.

Самое сильное взаимодействие – это взаимодействие между кварками. Протон состоит из 2 u кварков одного d кварка, нейтрон из одного u кварка и 2 d кварков. Оказалось, что на очень малых расстояниях ни один из кварков не замечает соседей, и они ведут себя как свободные, невзаимодействующие между собой частицы. При удалении кварков друг от друга между ними возникает притяжение, которое с увеличением расстояния возрастает. Чтобы разделить адроны на отдельные изолированные кварки потребовалась бы большая энергия. Так как такой энергии нет, то кварки оказываются вечными пленниками и навсегда остаются запертыми внутри адрона. Кварки удерживаются внутри адрона глюонным полем.

III . Закрепление

Вариант 1.

Вариант 2.

3.. Сколько живет нейтрон вне атома ядра? А. 12 мин Б. 15 мин

    Итог урока. На уроке познакомились частицами микромира, выяснили, какие частицы называются элементарными.

    Д/з § 9.3

Название частицы

Масса (в электронных массах)

Электрический заряд

Время жизни (с)

Античастица

Стабилен

Нейтрино электронное

Стабильно

Нейтрино мюонное

Стабильно

Электрон

Стабильн

Пи-мезоны

≈ 10 –10 –10 –8

Эта-нуль-мезон

Стабилен

Лямбда-гиперон

Сигма-гипероны

Кси-гипероны

Омега-минус-гиперон

III . Закрепление

    Назовите основные взаимодействия, которые существую в природе

    Чем отличаются частица и античастица? Что у них общего?

    Какие частицы участвую в гравитационном, электромагнитном, сильном и слабом взаимодействиях?

Вариант 1.

1. Одно из свойств элементарных частиц – способность……… А. превращаться друг в друга Б. самопроизвольно видоизменятся

2.Частицы, которые могут существовать в свободном состоянии неограниченное время, называются….. А. нестабильными Б. стабильными.

3. Какая частица является стабильной? А. протон Б. мезон

4. Частица, являющаяся долгожителем. А. нейтрино Б. нейтрон

5.Нейтрино получается в результате распада….. А. электрона Б. нейтрона

Вариант 2.

    Что является главным фактором существования элементарных частиц?

А. взаимное их проникновение Б. взаимное их превращение.

2. Какая из элементарных частиц не выделена в свободную частицу. А. пион Б. кварки

3. Сколько живет нейтрон вне атома ядра? А. 12 мин Б. 15 мин

    Какая из частиц не является стабильной. А. фотон Б. лептон

    Существуют ли в природе неизменные частицы? А. да Б. нет

Аристотель считал, что вещество во Вселенной состоит из четырех основных элементов – земли, воздуха, огня и воды, на которые действуют две силы: сила тяжести, влекущая землю и воду вниз, и сила легкости, под действием которой огонь и воздух стремятся вверх. Такой подход к строению Вселенной, когда все делится на вещество и силы, сохраняется и по сей день.

По Аристотелю, вещество непрерывно, т. е. любой кусок вещества можно бесконечно дробить на все меньшие и меньшие кусочки, так и не дойдя до такой крошечной крупинки, которая дальше бы уже не делилась. Однако некоторые другие греческие философы, например Демокрит, придерживались мнения, что материя по своей природе имеет зернистую структуру и все в мире состоит из большого числа разных атомов (греческое слово «атом» означает неделимый). Проходили века, но спор продолжался без всяких реальных доказательств, которые подтверждали бы правоту той или другой стороны. Наконец, в 1803 г. английский химик и физик Джон Дальтон показал, что тот факт, что химические вещества всегда соединяются в определенных пропорциях, можно объяснить, предположив, что атомы объединяются в группы, которые называются молекулами. Однако до начала нашего века спор между двумя школами так и не был решен в пользу атомистов. В разрешение этого спора очень важный вклад внес Эйнштейн. В своей статье, написанной в 1905 г., за несколько недель до знаменитой работы о специальной теории относительности, Эйнштейн указал на то, что явление, носящее название броуновского движения, – нерегулярное, хаотическое движение мельчайших частичек, взвешенных в воде, – можно объяснить ударами атомов жидкости об эти частички.

К тому времени уже имелись некоторые основания подумывать о том, что и атомы тоже не неделимы. Несколькими годами раньше Дж. Дж. Томсон из Тринити‑колледжа в Кембридже открыл новую частицу материи – электрон, масса которого меньше одной тысячной массы самого легкого атома. Экспериментальная установка Томсона немного напоминала современный телевизионный кинескоп. Раскаленная докрасна металлическая нить служила источником электронов. Поскольку электроны заряжены отрицательно, они ускорялись в электрическом поле и двигались в сторону экрана, покрытого слоем люминофора. Когда электроны падали на экран, на нем возникали вспышки света. Вскоре стало понятно, что эти электроны должны вылетать из атомов, и в 1911 г. английский физик Эрнст Резерфорд наконец доказал, что атомы вещества действительно обладают внутренней структурой: они состоят из крошечного положительно заряженного ядра и вращающихся вокруг пего электронов. Резерфорд пришел к этому выводу, изучая, как отклоняются альфа‑частицы (положительно заряженные частицы, испускаемые атомами радиоактивных веществ) при столкновении с атомами.

Вначале думали, что ядро атома состоит из электронов и положительно заряженных частиц, которые назвали протонами (от греческого слово «протос» – первичный), потому что протоны считались теми фундаментальными блоками, из которых состоит материя. Однако в 1932 г. Джеймс Чедвик, коллега Резерфорда по Кембриджскому университету, обнаружил, что в ядре имеются еще и другие частицы – нейтроны, масса которых почти равна массе протона, но которые не заряжены. За это открытие Чедвик был удостоен Нобелевской премии и выбран главой Конвилл‑энд‑Кайус‑колледжа Кембриджского университета (колледж, в котором я сейчас работаю). Потом ему пришлось отказаться от этого поста из‑за разногласий с сотрудниками. В колледже постоянно происходили ожесточенные споры, которые начались с тех пор, как после войны группа вернувшейся молодежи проголосовала против того, чтобы старые сотрудники оставались на своих должностях, которые они уже много лет занимали. Все это происходило еще до меня; я начал работать в колледже в 1965 г. и застал самый конец борьбы, когда другой глава колледжа, нобелевский лауреат Невилл Мотт, вынужден был тоже уйти в отставку.

Еще лет двадцать назад протоны и нейтроны считались «элементарными» частицами, но эксперименты по взаимодействию протонов и электронов, движущихся с большими скоростями, с протонами показали, что на самом деле протоны состоят из еще более мелких частиц. Мюррей Гелл‑Манн, теоретик из Калифорнийского технологического института, назвал эти частицы кварками. В 1969 г. за исследование кварков Гелл‑Манн был удостоен Нобелевской премии. Название «кварк» взято из заумной стихотворной строки Джеймса Джойса: «Три кварка для мастера Марка!». По идее, слово quark должно произноситься так же, как слово quart (куорт), в которой буква t на конце заменена буквой k, но обычно его произносят так, что оно рифмуется со словом lark.

Известно несколько разновидностей кварков: предполагают, что существует по крайней мере шесть «ароматов», которым отвечают u‑кварк, d‑кварк, странный кварк, очарованный кварк, b‑кварк и t‑кварк. Кварк каждого «аромата» может быть еще и трех «цветов» – красного, зеленого и синего. (Следует подчеркнуть, что это просто обозначения, так как размер кварков значительно меньше длины волны видимого света и поэтому цвета в обычном смысле слова у них нет. Дело просто в том, что современным физикам нравится придумывать названия новых частиц и явлений, не ограничивая больше свою фантазию греческим алфавитом). Протон и нейтрон состоят из трех кварков разных «цветов». В протоне содержится два u‑кварка и один d‑кварк, в нейтроне – два d‑кварка и один u‑кварк. Частицы можно строить и из других кварков (странного, очарованного, b и t), но все эти кварки обладают гораздо большей массой и очень быстро распадаются на протоны и нейтроны.

Мы уже знаем, что ни атомы, ни находящиеся внутри атома протоны с нейтронами не являются неделимыми, а потому возникает вопрос: что же такое настоящие элементарные частицы – те исходные кирпичи, из которых все состоит? Поскольку длины световых волн существенно больше размеров атома, у нас нет надежды «увидеть» составные части атома обычным способом. Для этой цели необходимы значительно меньшие длины волн. В предыдущей главе мы узнали, что, согласно квантовой механике, все частицы на самом деле являются еще и волнами и чем выше энергия частицы, тем меньше соответствующая длина волны. Таким образом, наш ответ на поставленный вопрос зависит от того, насколько высока энергия частиц, имеющихся в нашем распоряжении, потому что ею определяется насколько мал масштаб тех длин, которые мы сможем наблюдать. Единицы, в которых обычно измеряется энергия частиц, называются электронвольтами. (Томсон в своих экспериментах для ускорения электронов использовал электрическое поле. Электронвольт – это энергия, которую приобретает электрон в электрическом поле величиной 1 вольт). В XIX в., когда умели использовать только частицы с энергиями в несколько электронвольт, выделяющимися в химических реакциях типа горения, атомы считались самыми мелкими частями материи. В экспериментах Резерфорда энергии альфа‑частиц составляли миллионы электронвольт. Затем мы научились с помощью электромагнитных полей разгонять частицы сначала до энергий в миллионы, а потом и в тысячи миллионов электронвольт. Так мы узнали, что частицы, которые двадцать лет назад считались элементарными, на самом деле состоят из меньших частиц. А что если при переходе к еще более высоким энергиям окажется, что и эти меньшие частицы в свою очередь состоят из еще меньших? Конечно, это вполне вероятная ситуация, но у нас сейчас есть некоторые теоретические основания считать, что мы уже владеем или почти владеем сведениями об исходных «кирпичиках», из которых построено все в природе.

Все, что есть во Вселенной, в том числе свет и гравитацию, можно описывать, исходя из представления о частицах, с учетом частично‑волнового дуализма, о котором мы говорили в предыдущей главе. Частицы же имеют некую вращательную характеристику – спин (spin – вращаться, крутиться (англ.). – прим. перев.).

Представим себе частицы в виде маленьких волчков, вращающихся вокруг своей оси. Правда, такая картина может ввести в заблуждение, потому что в квантовой механике частицы не имеют вполне определенной оси вращения. На самом деле спин частицы дает нам сведения о том, как выглядит эта частица, если смотреть на нее с разных сторон. Частица со спином 0 похожа на точку: она выглядит со всех сторон одинаково (рис. 5.1, I). Частицу со спином 1 можно сравнить со стрелой: с разных сторон она выглядит по‑разному (рис. 5.1, II) и принимает тот же вид лишь после полного оборота на 360 град. Частицу со спином 2 можно сравнить со стрелой, заточенной с обеих сторон: любое ее положение повторяется после полуоборота (180 град.). Аналогичным образом частица с более высоким спином возвращается в первоначальное состояние при повороте на еще меньшую часть полного оборота. Это все довольно очевидно, а удивительно другое – существуют частицы, которые после полного оборота не принимают прежний вид: их нужно дважды полностью повернуть! Говорят, что такие частицы обладают спином 1/2.

Все известные частицы во Вселенной можно разделить на две группы: частицы со спином 1/2, из которых состоит вещество во Вселенной, и частицы со спином 0, 1 и 2, которые, как мы увидим, создают силы, действующие между частицами вещества. Частицы вещества подчиняются так называемому принципу запрета Паули, открытому в 1925 г. австрийским физиком Вольфгангом Паули. В 1945 г. Паули за свое открытие был удостоен Нобелевской премии. Он являл собой идеальный пример физика‑теоретика: говорят, что одно его присутствие в городе нарушало ход всех экспериментов! Принцип Паули гласит, что две одинаковые частицы не могут существовать в одном и том же состоянии, т. е. не могут иметь координаты и скорости, одинаковые с той точностью, которая задается принципом неопределенности. Принцип Паули имеет крайне важное значение, так как он позволил объяснить, почему под действием сил, создаваемых частицами со спином 0, 1, 2, частицы материи не коллапсируют в состояние с очень высокой плотностью: если частицы вещества имеют очень близкие значения координат, то их скорости должны быть разными, и, следовательно, они не смогут долго находиться в точках с этими координатами. Если бы в сотворении мира не участвовал принцип Паули, кварки не могли бы объединиться в отдельные, четко определенные частицы – протоны и нейтроны, которые в свою очередь не смогли бы, объединившись с электронами, образовать отдельные, четко определенные атомы. Без принципа Паули все эти частицы сколлапсировали бы и превратились в более или менее однородное и плотное «желе».

Правильное представление об электроне и других частицах со спином 1/2 отсутствовало до 1928 г., когда Поль Дирак предложил теорию для описания этих частиц. Впоследствии Дирак получил кафедру математики в Кембридже (которую в свое время занимал Ньютон и которую сейчас занимаю я). Теория Дирака была первой теорией такого рода, которая согласовалась и с квантовой механикой, и со специальной теорией относительности. В ней давалось математическое объяснение того, почему спин электрона равен 1/2, т. е. почему при однократном полном обороте электрона он не принимает прежний вид, а при двукратном принимает. Теория Дирака предсказывала также, что у электрона должен быть партнер – антиэлектрон, или, иначе, позитрон. Открытие позитрона в 1932 г. подтвердило теорию Дирака, и в 1933 г. он получил Нобелевскую премию по физике. Сейчас мы знаем, что каждой частице соответствует античастица, с которой она может аннигилировать. (В случае частиц, обеспечивающих взаимодействие, частица и античастица – одно и то же). Могли бы существовать целые антислова и антилюди, состоящие из античастиц. Но встретив антисебя, не вздумайте поздороваться с ним за руку! Возникнет ослепительная вспышка света, и вы оба исчезнете. Чрезвычайно важен вопрос, почему вокруг нас гораздо больше частиц, чем античастиц. Мы к нему еще вернемся в этой главе.

В квантовой механике предполагается, что все силы, или взаимодействия, между частицами вещества переносятся частицами с целочисленным спином, равным 0, 1 или 2. Частица вещества, например электрон или кварк, испускает частицу, которая является переносчиком взаимодействия. В результате отдачи скорость частицы вещества меняется. Затем частица‑переносчик налетает на другую частицу вещества и поглощается ею. Это соударение изменяет скорость второй частицы, как будто между этими двумя частицами вещества действует сила.

Частицы‑переносчики взаимодействия обладают одним важным свойством: они не подчиняются принципу запрета Паули. Это означает отсутствие ограничений для числа обмениваемых частиц, так что возникающая сила взаимодействия может оказаться большой. Но если масса частиц‑переносчиков велика, то на больших расстояниях их рождение и обмен будут затруднены. Таким образом, переносимые ими силы будут короткодействующими. Если же частицы‑переносчики не будут обладать собственной массой, возникнут дальнодействующие силы. Частицы‑переносчики, которыми обмениваются частицы вещества, называются виртуальными, потому что в отличие от реальных их нельзя непосредственно зарегистрировать при помощи детектора частиц. Однако мы знаем, что виртуальные частицы существуют, потому что они создают эффекты, поддающиеся измерению: благодаря виртуальным частицам возникают силы, действующие между частицами вещества. При некоторых условиях частицы со спинами 0, 1, 2 существуют и как реальные; тогда их можно непосредственно зарегистрировать. С точки зрения классической физики такие частицы встречаются нам в виде волн, скажем световых или гравитационных. Они иногда испускаются при взаимодействии частиц вещества, протекающем за счет обмена частицами‑переносчиками взаимодействия. (Например, электрическая сила взаимного отталкивания между двумя электронами возникает за счет обмена виртуальными фотонами, которые нельзя непосредственно зарегистрировать. Но если электроны пролетают друг мимо друга, то возможно испускание реальных фотонов, которые будут зарегистрированы как световые волны).

Частицы‑переносчики можно разделить на четыре типа в зависимости от величины переносимого ими взаимодействия и от того, с какими частицами они взаимодействовали. Подчеркнем, что такое разделение совершенно искусственно; это схема, удобная для разработки частных теорий, ничего более серьезного в ней, вероятно, нет. Большинство физиков надеется, что в конце концов удастся создать единую теорию, в которой все четыре силы оказались бы разновидностями одной и той же силы. Многие даже видят в этом главную цель современной физики. Недавно увенчались успехом попытки объединения трех сил. В этой главе я еще собираюсь о них рассказать. О том, как обстоит дело с включением в такое объединение гравитации, мы поговорим немного позже.

Итак, первая разновидность сил – гравитационная сила. Гравитационные силы носят универсальный характер. Это означает, что всякая частица находится под действием гравитационной силы, величина которой зависит от массы или энергии частицы. Гравитация гораздо слабее каждой из оставшихся трех сил. Это очень слабая сила, которую мы вообще не заметили бы, если бы не два ее специфических свойства: гравитационные силы действуют на больших расстояниях и всегда являются силами притяжения. Следовательно, очень слабые гравитационные силы взаимодействия отдельных частиц в двух телах большого размера, таких, например, как Земля и Солнце, могут в сумме дать очень большую силу. Три остальных вида взаимодействия либо действуют только на малых расстояниях, либо являются то отталкивающими, то притягивающими, что приводит в общем к компенсации. В квантово‑механическом подходе к гравитационному полю считается, что гравитационная сила, действующая между двумя частицами материи, переносится частицей со спином 2, которая называется гравитоном. Гравитон не обладает собственной массой, и поэтому переносимая им сила является дальнодействующей. Гравитационное взаимодействие между Солнцем и Землей объясняется тем, что частицы, из которых состоят Земля и Солнце, обмениваются гравитонами. Несмотря на то что в обмене участвуют лишь виртуальные частицы, создаваемый ими эффект безусловно поддается измерению, потому что этот эффект – вращение Земли вокруг Солнца! Реальные гравитоны распространяются в виде волн, которые в классической физике называются гравитационными, но они очень слабые, и их так трудно зарегистрировать, что пока это никому не удалось сделать.

Следующий тип взаимодействия создается электромагнитными силами, которые действуют между электрически заряженными частицами, как, например, электроны и кварки, но не отвечают за взаимодействие таких незаряженных частиц, как гравитоны. Электромагнитные взаимодействия гораздо сильнее гравитационных: электромагнитная сила, действующая между двумя электронами, примерно в миллион миллионов миллионов миллионов миллионов миллионов миллионов (единица с сорока двумя нулями) раз больше гравитационной силы. Но существуют два вида электрического заряда – положительный и отрицательный. Между двумя положительными зарядами так же, как и между двумя отрицательными, действует сила отталкивания, а между положительным и отрицательным зарядами – сила притяжения. В больших телах, например в Земле или Солнце, содержание положительных и отрицательных зарядов почти одинаково, и, следовательно, силы притяжения и отталкивания почти компенсируют друг друга, и остается очень малая чисто электромагнитная сила. Однако в малых масштабах атомов и молекул электромагнитные силы доминируют. Под действием электромагнитного притяжения между отрицательно заряженными электронами и положительно заряженными протонами в ядре электроны в атоме вращаются вокруг ядра в точности так же, как под действием гравитационного притяжения Земля вращается вокруг Солнца. Электромагнитное притяжение описывается как результат обмена большим числом виртуальных безмассовых частиц со спином 1, которые называются фотонами. Как и в случае гравитонов, фотоны, осуществляющие обмен, являются виртуальными, но при переходе электрона с одной разрешенной орбиты на другую, расположенную ближе к ядру, освобождается энергия, и в результате испускается реальный фотон, который при подходящей длине волны можно наблюдать человеческим глазом как видимый свет, или же с помощью какого‑нибудь детектора фотонов, например фотопленки. Аналогичным образом при соударении реального фотона с атомом может произойти переход электрона с одной орбиты на другую, более далекую от ядра. Этот переход происходит за счет энергии фотона, который поглощается атомом. Взаимодействие третьего типа называется слабым взаимодействием. Оно отвечает за радиоактивность и существует между всеми частицами вещества со спином 1/2, но в нем не участвуют частицы со спином 0, 1, 2 – фотоны и гравитоны. До 1967 г. свойства слабых сил были плохо изучены, а в 1967 г. Абдус Салам, теоретик из Лондонского Империал‑колледжа, и Стивен Вайнберг из Гарвардского университета одновременно предложили теорию, которая объединяла слабое взаимодействие с электромагнитным аналогично тому, как на сто лет раньше Максвелл объединил электричество и магнетизм. Вайнберг и Салам высказали предположение о том, что в дополнение к фотону существуют еще три частицы со спином 1, которые все вместе называются тяжелыми векторными бозонами и являются переносчиками слабого взаимодействия. Эти бозоны были обозначены символами W+, W– и Z0, масса каждого из них составляла 100 ГэВ (ГэВ означает гигаэлектронвольт, т. е. тысяча миллионов электронвольт). Теория Вайнберга‑Салама обладает свойством так называемого спонтанного нарушения симметрии. Оно означает, что частицы, совершенно разные при низких энергиях, при высоких энергиях оказываются на самом деле одной и той же частицей, но находящейся в разных состояниях. Это в каком‑то смысле похоже на поведение шарика при игре в рулетку. При всех высоких энергиях (т. е. при быстром вращении колеса) шарик ведет себя всегда почти одинаково – безостановочно вращается. Но когда колесо замедлится, энергия шарика уменьшается, и в конце концов он проваливается в одну из тридцати семи канавок, имеющихся на колесе. Иными словами, при низких энергиях шарик может существовать в тридцати семи состояниях. Если бы мы почему‑либо могли наблюдать шарик только при низких энергиях, то считали бы, что существует тридцать семь разных типов шариков!

Теория Вайнберга‑Салама предсказывала, что при энергиях, значительно превышающих 100 ГэВ, три новые частицы и фотон должны вести себя одинаково, а при более низких энергиях частиц, т. е. в большинстве обычных ситуаций, эта «симметрия» должна нарушаться. Массы W+, W– и Z0 бозонов предсказывались большими, чтобы создаваемые ими силы имели очень малый радиус действия. Когда Вайнберг и Салам выдвинули свою теорию, им мало кто верил, а на маломощных ускорителях тех времен невозможно было достичь энергии в 100 ГэВ, необходимой для рождения реальных W+, W– и Z0 частиц. Однако лет через десять предсказания, полученные в этой теории при низких энергиях, настолько хорошо подтвердились экспериментально, что Вайнбергу и Саламу была присуждена Нобелевская премия 1979 г. совместно с Шелдоном Глэшоу (тоже из Гарварда), который предложил похожую единую теорию электромагнитных и слабых ядерных взаимодействии. Комитет по Нобелевским премиям был избавлен от неприятностей, которые могли бы возникнуть, если бы оказалось, что он совершил ошибку сделанным в 1983 г. в ЦЕРНе открытием трех массивных партнеров фотона с правильными значениями массы и другими предсказанными характеристиками. Карло Руббиа, возглавивший группу из нескольких сотен физиков, которым принадлежало это открытие, получил Нобелевскую премию 1984 г., присужденную ему совместно с инженером ЦЕРНа Симоном Ван дер Меером, автором проекта накопителя античастиц, использованного в эксперименте. (В наше время чрезвычайно трудно оставить свой след в экспериментальной физике, разве что вы уже на вершине!).

Сильное ядерное взаимодействие представляет собой взаимодействие четвертого типа, которое удерживает кварки внутри протона и нейтрона, а протоны и нейтроны внутри атомного ядра. Переносчиком сильного взаимодействия считается еще одна частица со спином 1, которая называется глюоном.

Глюоны взаимодействуют только с кварками и с другими глюонами. У сильного взаимодействия есть одно необычайное свойство – оно обладает конфайнментом (confinement – ограничение, удержание (англ.). – прим. ред.).

Конфайнмент состоит в том, что частицы всегда удерживаются в бесцветных комбинациях. Один кварк не может существовать сам по себе, потому что тогда он должен был бы иметь цвет (красный, зеленый или синий). Поэтому красный кварк должен быть соединен с зеленым и синим посредством глюонной «струи» (красный + зеленый + синий = белый). Такой триплет оказывается протоном или нейтроном. Существует и другая возможность, когда кварк и антикварк объединяются в пару (красный + антикрасный, или зеленый + антизеленый, или синий + антисиний = белый). Такие комбинации входят в состав частиц, называемых мезонами. Эти частицы нестабильны, потому что кварк и антикварк могут аннигилировать друг с другом, образуя электроны и другие частицы. Аналогичным образом, один глюон не может существовать сам по себе из‑за конфайнмента, потому что глюоны тоже обладают цветом. Следовательно, глюоны должны группироваться таким образом, чтобы их цвета в сумме давали белый цвет. Описанная группа глюонов образует нестабильную частицу – глюбол.

Мы не можем наблюдать отдельный кварк или глюон из‑за конфайнмента. Не означает ли это, что само представление о кварках и глюонах как о частицах несколько метафизично? Нет, потому что сильное взаимодействие характеризуется еще одним свойством, которое называется асимптотической свободой. Благодаря этому свойству понятие кварков и глюонов становится вполне определенным. При обычных энергиях сильное взаимодействие действительно является сильным и плотно прижимает кварки друг к другу. Но, как показывают эксперименты на мощных ускорителях, при высоких энергиях сильное взаимодействие заметно ослабевает и кварки и глюоны начинают вести себя почти как свободные частицы. На рис. 5.2 представлен фотоснимок столкновения протона и антипротона высокой энергии. Мы видим, что несколько почти свободных кварков, родившихся в результате взаимодействия, образовали «струи» треков, которые видны на фотографии.

Итогом успешного объединения электромагнитного и слабого взаимодействий стали попытки соединить эти два вида взаимодействий с сильным взаимодействием, чтобы в результате получилась так называемая теория великого объединения. В этом названии есть некоторое преувеличение: во‑первых, теории великого объединения не такие уж великие, а во‑вторых, они не объединяют полностью все взаимодействия, потому что в них не входит гравитация. Кроме того, все эти теории на самом деле неполны, потому что содержат параметры, которые нельзя предсказать теоретически и которые надо вычислять, сравнивая теоретические и экспериментальные результаты. Тем не менее такие теории могут стать шагом к полной теории объединения, охватывающей все взаимодействия. Основная идея построения теорий великого объединения состоит в следующем: как уже говорилось, сильные взаимодействия при высоких энергиях становятся слабее, чем при низких. В то же время электромагнитные и слабые силы асимптотически не свободны, и при высоких энергиях они растут. Тогда при каком‑то очень большом значении энергии – при энергии великого объединения – эти три силы могли бы сравняться между собой и стать просто разновидностями одной и той же силы. Теории великого объединения предсказывают, что при этой энергии разные частицы вещества со спином 1/2, такие, как кварки и электроны, тоже перестали бы различаться, что было бы еще одним шагом к объединению.

Значение энергии великого объединения не очень хорошо известно, но оно должно составлять по меньшей мере тысячу миллионов миллионов ГэВ. В ускорителях современного поколения сталкиваются частицы с энергиями около 100 ГэВ, а в будущих проектах эта величина должна возрасти до нескольких тысяч ГэВ. Но для ускорения частиц до энергии великого объединения нужен ускоритель размером с Солнечную систему. Маловероятно, чтобы в нынешней экономической ситуации кто‑нибудь решился ее финансировать. Вот почему невозможна непосредственная экспериментальная проверка теорий великого объединения. Но здесь, как и в случае электрослабой единой теории, существуют низкоэнергетические следствия, которые можно проверить.

Самое интересное из таких следствии то, что протоны, составляющие большую часть массы обычного вещества, могут спонтанно распадаться на более легкие частицы, такие, как антиэлектроны. Причина в том, что при энергии великого объединения нет существенной разницы между кварком и антиэлектроном. Три кварка внутри протона обычно не обладают достаточным количеством энергии для превращения в антиэлектроны, но один из кварков может совершенно случайно получить однажды энергию, достаточную для этого превращения, потому что в силу принципа неопределенности невозможно точно зафиксировать энергию кварков внутри протона. Тогда протон должен распасться, но вероятность того, что кварк будет иметь достаточную энергию, столь мала, что ждать этого придется по крайней мере миллион миллионов миллионов миллионов миллионов (единица с тридцатью нулями) лет, что гораздо больше времени, прошедшего с момента большого взрыва, которое не превышает десяти тысяч миллионов лет или что‑то около того (единица с десятью нулями). Отсюда напрашивается вывод, что возможность спонтанного распада протона нельзя экспериментально проверить. Можно, однако, увеличить вероятность наблюдения распада протона, изучая очень большое число протонов. (Наблюдая, например, 1 с тридцатью одним нулем протонов в течение года, можно надеяться обнаружить, согласно одной из простейших теорий великого объединения, более одного распада протона).

Несколько таких экспериментов уже выполнено, но они не дали определенных сведений о распадах протона или нейтрона. Один из экспериментов, в котором использовалось восемь тысяч тонн воды, проводился в соляной шахте штата Огайо (для того, чтобы исключить космические помехи, которые можно принять за распад протона). Поскольку в течение всего эксперимента не было зарегистрировано ни одного распада протона, можно вычислить, что время жизни протона должно быть больше, чем десять миллионов миллионов миллионов миллионов миллионов (единица с тридцатью одним нулем) лет. Этот результат превышает предсказания простейшей теории великого объединения, но есть и более сложные теории, дающие более высокую оценку. Для их проверки потребуются еще более точные эксперименты с еще большими количествами вещества.

Несмотря на трудности наблюдения распада протона, не исключено, что само наше существование есть следствие обратного процесса – образования протонов или, еще проще, кварков на самой начальной стадии, когда кварков было не больше, чем антикварков. Такая картина начала Вселенной представляется наиболее естественной. Земное вещество в основном состоит из протонов и нейтронов, которые в свою очередь состоят из кварков, но в нем нет ни антипротонов, ни антинейтронов, состоящих из антикварков, если не считать те несколько штук, которые были получены на больших ускорителях. Эксперименты с космическими лучами подтверждают, что то же самое справедливо и для всего вещества в нашей Галактике: в нем нет ни антипротонов, ни антинейтронов, за исключением того небольшого количества античастиц, которое возникает в результате рождения пар частица‑античастица в соударениях частиц при высоких энергиях. Если бы в нашей Галактике были большие участки антивещества, то можно было бы ожидать сильного излучения на границах раздела вещества и антивещества, где возникало бы множество соударений частиц и античастиц, которые, аннигилируя, испускали бы излучение высокой энергии.

У нас нет прямых указаний на то, состоит ли вещество других галактик из протонов и нейтронов или из антипротонов и антинейтронов, но оно должно состоять из частиц одного типа: в пределах одной галактики не может быть смеси частиц и античастиц, потому что в результате их аннигиляции испускалось бы мощное излучение. Поэтому мы считаем, что все галактики состоят из кварков, а не из антикварков; вряд ли одни галактики состояли из вещества, а другие – из антивещества.

Но почему кварков должно быть настолько больше, чем антикварков? Почему число их не одинаково? Нам очень повезло, что это так, потому что если бы кварков и антикварков было поровну, то почти все кварки и антикварки проаннигилировали бы друг с другом в ранней Вселенной, наполнив ее излучением, но едва ли оставив хоть какое‑нибудь вещество. Не было бы ни галактик, ни звезд, ни планет, на которых могла бы развиваться человеческая жизнь. С помощью теорий великого объединения можно объяснить, почему во Вселенной кварков должно быть сейчас больше, чем антикварков, даже в том случае, если в самом начале их было поровну. Как мы уже знаем, в теориях великого объединения при высоких энергиях кварки могут превращаться в антиэлектроны. Возможны и обратные процессы, когда антикварки превращаются в электроны, а электроны и антиэлектроны – в антикварки и кварки. Когда‑то на очень ранней стадии развития Вселенной она была такой горячей, что энергии частиц было достаточно для подобных превращений. Но почему же в результате кварков стало больше, чем антикварков? Причина кроется в том, что законы физики не совсем одинаковы для частиц и античастиц.

До 1956 г. считалось, что законы физики инвариантны относительно трех преобразований симметрии – C, P и T. Симметрия С означает, что все законы одинаковы для частиц и античастиц. Симметрия P означает, что законы физики одинаковы для любого явления и для его зеркального отражения (зеркальным отражением частицы, вращающейся по часовой стрелке, будет частица, вращающаяся против часовой стрелки). Наконец, смысл симметрии Т состоит в том, что при изменении направления движения всех частиц и античастиц на обратное система вернется в то состояние, в котором она находилась раньше; иными словами, законы одинаковы при движении во времени вперед или назад.

В 1956 г. два американских физика, Тзундао Ли и Чженьнин Янг, высказали предположение, что слабое взаимодействие на самом деле не инвариантно относительно Р‑преобразований. Иными словами, в результате слабого взаимодействия развитие Вселенной может пойти иначе, чем развитие ее зеркального изображения. В том же году Цзиньсян By, коллега Ли и Янга, сумела доказать, что их предположение правильно. Расположив в магнитном поле ядра радиоактивных атомов так, чтобы их спины были направлены одинаково, она показала, что электронов вылетает больше в одном направлении, чем в другом. В следующем году Ли и Янг за свое открытие были удостоены Нобелевской премии. Оказалось, что слабые взаимодействия не подчиняются и симметрии С. Это означает, что Вселенная, состоящая из античастиц, будет вести себя иначе, чем наша Вселенная. Всем, однако, казалось, что слабое взаимодействие должно все‑таки подчиняться комбинированной симметрии CP, т. е. развитие Вселенной должно происходить так же, как и развитие ее зеркального отражения, если, отразив ее в зеркале, мы еще каждую частицу заменим античастицей! Но в 1964 г. еще два американца, Джеймс Кронин и Вел Фитч, обнаружили, что в распаде частиц, которые называются K‑мезонами, нарушается даже CP‑симметрия.

В результате в 1980 г. Кронин и Фитч получили за свою работу Нобелевскую премию. (Какое огромное количество премий присуждено за работы, в которых показано, что Вселенная не так проста, как нам кажется).

Существует математическая теорема, в которой утверждается, что любая теория, подчиняющаяся квантовой механике и теории относительности, должна всегда быть инвариантна относительно комбинированной симметрии CPT. Другими словами, поведение Вселенной не изменится, если заменить частицы античастицами, отразить все в зеркале и еще изменить направление времени на обратное. Но Кронин и Фитч показали, что если заменить частицы античастицами и произвести зеркальное отражение, но при этом не изменять направление времени на обратное, то Вселенная будет вести себя по‑другому. Следовательно, при обращении времени законы физики должны измениться, т. е. они не инвариантны относительно симметрии Т.

Понятно, что в ранней Вселенной нарушалась симметрия Т: когда время течет вперед, Вселенная расширяется, а если быi время пошло назад, то Вселенная начала бы сжиматься. А поскольку существуют силы, не инвариантные относительно симметрии Т, то отсюда следует, что но мере расширения Вселенной под действием этих сил антиэлектроны должны превращаться в кварки чаще, чем электроны в антикварки. Затем, когда Вселенная расширялась и охлаждалась, антикварки и кварки должны были аннигилировать, но поскольку кварков оказалось бы больше, чем антикварков, кварки остались бы в небольшом избытке. И они‑то и есть те самые кварки, из которых состоит сегодняшнее вещество, которое мы видим и из которого сотворены мы сами. Таким образом, само наше существование можно рассматривать как подтверждение теории великого объединения, правда, только как качественное подтверждение. Неопределенности происходят из‑за того, что мы не можем предсказать, ни сколько кварков останется после аннигиляции, ни даже будут ли оставшиеся частицы кварками или антикварками. (Правда, если бы в излишке остались антикварки, мы бы просто переименовали их в кварки, а кварки – в антикварки).

Теории великого объединения не включают в себя гравитационное взаимодействие. Это не столь уж существенно, потому что гравитационные силы так малы, что их влиянием можно просто пренебречь, когда мы им

Презентация на тему "Элементарные частицы" по физике в формате powerpoint. В данной презентации для школьников 11 класса объясняется физика элементарных частиц и систематизируются знания по теме. Цель работы - развить абстрактное, экологическое и научное мышления учащихся на основе представлений об элементарных частицах и их взаимодействиях. Автор презентации: Попова И.А., учитель физики.

Фрагменты из презентации

Сколько элементов в таблице Менделеева?

  • Всего лишь 92.
  • Как? Там больше?
  • Верно, но все остальные - искусственно полученные, они в природе не встречаются.
  • Итак - 92 атома. Из них тоже можно составить молекулы, т.е. вещества!
  • Но то, что все вещества состоят из атомов, утверждал еще Демокрит (400 лет до нашей эры).
  • Он был большим путешественником, и его любимым изречением было:
  • "Не существует ничего, кроме атомов и чистого пространства, все остальное - воззрение"

Хронология физики частиц

  • Перед физиками - теоретиками встала труднейшая задача упорядочить весь обнаруженный "зоопарк" частиц и попытаться свести число фундаментальных частиц к минимуму, доказав, что другие частицы состоят из фундаментальных частиц
  • Все эти частицы были нестабильными, т.е. распадались на частицы с меньшими массами, в конечном счете превращаясь в стабильные протон, электрон, фотон и нейтрино (и их античастицы).
  • Третий эта. М. Гелл-Манн и независимо Дж. Цвейг Предложили модель строения сильно взаимодействующих частиц из фундаментальных частиц - кварков
  • Эта модель к настоящему времени превратилась в стройную теорию всех известных типов взаимодействий частиц.

Как обнаружить элементарную частицу?

Обычно изучают и анализируют следы (траектории или треки), оставленные частицами, по фотографиям

Классификация элементарных частиц

Все частицы делятся на два класса:

  • Фермионы, которые составляют вещество;
  • Бозоны, через которые осуществляется взаимодействие.

Кварки

  • Кварки участвуют в сильных взаимодействиях, а также в слабых и в электромагнитных.
  • Гелл-Манн и Георг Цвейг предложили кварковую модель в 1964 г.
  • Принцип Паули: в одной системе взаимосвязанных частиц никогда не существует хотя бы две частицы с тождественными параметрами, если эти частицы обладают полуцелым спином.

Что такое спин?

  • Спин демонстрирует, что существует пространство состояний, никак не связанное с перемещением частицы в обычном пространстве;
  • Спин (от англ. to spin - крутиться) часто сравнивают с угловым моментом «быстро вращающегося волчка» - это неверно!
  • Спин является внутренней квантовой характеристикой частицы, которая не имеет аналога в классической механике;
  • Спин (от англ. spin — вертеть[-ся], вращение) — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого

Четыре вида физических взаимодействий

  • гравитационные,
  • электромагнитные,
  • слабые,
  • сильные.
  • Слабое взаимодействие - меняет внутреннюю природу частиц.
  • Сильные взаимодействия - обусловливают различные ядерные реакции, а также возникновение сил, связывающих нейтроны и протоны в ядрах.

Свойства кварков

  • Кварки имеют свойство, называемое цветовой заряд.
  • Существуют три вида цветового заряда, условно обозначаемые как
  • синий,
  • зелёный
  • Красный.
  • Каждый цвет имеет дополнение в виде своего антицвета —антисиний, антизелёный и антикрасный.
  • В отличие от кварков, антикварки обладают не цветом, а антицветом, то есть противоположным цветовым зарядом.
Свойства кварков: масса
  • У кварков имеется два основных типа масс, несовпадающих по величине:
  • масса токового кварка, оцениваемая в процессах со значительной передачей квадрата 4-импульса, и
  • структурная масса (блоковая, конституэнтная масса); включает в себя ещё массу глюонного поля вокруг кварка и оценивается из массы адронов и их кваркового состава.
Свойства кварков: аромат
  • Каждый аромат (вид) кварка характеризуется такими квантовыми числами, как
  • изоспин Iz,
  • странность S,
  • очарование C,
  • прелесть (боттомность, красота) B′,
  • истинность (топность) T.

Задачи

  • Какая энергия выделяется при аннигиляции электрона и позитрона?
  • Какая энергия выделяется при аннигиляции протона и антипротона?
  • При каких ядерных процессах возникает нейтрино?
    • А. При α - распаде.
    • Б. При β - распаде.
    • В. При излучении γ - квантов.
  • При каких ядерных процессах возникает антинейтрино?
    • А. При α - распаде.
    • Б. При β - распаде.
    • В. При излучении γ - квантов.
    • Г. При любых ядерных превращениях
  • Протон состоит из...
    • А. . . .нейтрона, позитрона и нейтрино.
    • Б. . . .мезонов.
    • В. . . .кварков.
    • Г. Протон не имеет составных частей.
  • Нейтрон состоит из...
    • А. . . .протона, электрона и нейтрино.
    • Б. . . .мезонов.
    • В. . . . кварков.
    • Г. Нейтрон не имеет составных частей.
  • Что было доказано опытами Дэвиссона и Джермера?
    • А. Квантовый характер поглощения энергии атомами.
    • Б. Квантовый характер излучения энергии атомами.
    • В. Волновые свойства света.
    • Г. Волновые свойства электронов.
  • Какая из приведенных формул определяет длину волны де-Бройля для электрона (m и v — масса и скорость электрона)?

Тест

  • Какие физические системы образуются из элементарных частиц в результате электромагнитного взаимодействия? А. Электроны, протоны. Б. Ядра атомов. В. Атомы, молекулы вещества и античастицы.
  • С точки зрения взаимодействия все частицы делятся на три типа: А. Мезоны, фотоны и лептоны. Б. Фотоны, лептоны и барионы. В. Фотоны, лептоны и адроны.
  • Что является главным фактором существования элементарных частиц? А. Взаимное превращение. Б. Стабильность. В. Взаимодействие частиц друг с другом.
  • Какие взаимодействия определяют устойчивость ядер в атомах? А. Гравитационные. Б. Электромагнитные. В. Ядерные. Г. Слабые.
  • Существуют ли в природе неизменные частицы? А. Существуют. Б. Не существуют.
  • Реальность превращения вещества в электромагнитное поле: А. Подтверждается на опыте аннигиляции электрона и позитрона. Б. Подтверждается на опыте аннигиляции электрона и протона.
  • Реакция превращения вещества в поле: А. е + 2γ→е+ Б. е + 2γ→е- В. е+ +е- =2γ.
  • Какое взаимодействие ответственно за превращение элементарных частиц друг в друга? А. Сильное взаимодействие. Б. Гравитационное. В. Слабое взаимодействие Г. Сильное, слабое, электромагнитное.

Ответ на непрекращающийся вопрос: какая самая маленькая частица во Вселенной эволюционировал вместе с человечеством.

Люди когда-то думали, что песчинки были строительными блоками того, что мы видим вокруг нас. Затем был обнаружен атом, и он считался неделимым, пока он не был расщеплен, чтобы выявить протоны, нейтроны и электроны внутри. Они тоже не оказались самыми маленькими частицами во Вселенной, так как ученые обнаружили, что протоны и нейтроны состоят из трех кварков каждый.

Пока ученые не смогли увидеть никаких доказательств того, что внутри кварков что-то есть и достигнут самый фундаментальный слой материи или самая маленькая частица во Вселенной.

И даже если кварки и электроны неделимы ученые не знают, являются ли они наименьшими битами материи в существовании или если Вселенная содержит объекты, которые являются еще более мелкими.

Самые мельчайшие частицы Вселенной

Они бывают разных вкусов и размеров, некоторые имеют удивительную связь, другие по существу испаряют друг друга, многие из них имеют фантастические названия: кварки состоящие из барионов и мезонов, нейтроны и протоны, нуклоны, гипероны, мезоны, барионы, нуклоны, фотоны и т.д.

Бозон Хиггса, настолько важная для науки частица, что ее называют “частицей Бога”. Считается, что она определяет массу всем другим. Элемент был впервые теоретизирован в 1964 году, когда ученые задавались вопросом, почему некоторые частицы более массивны, чем другие.

Бозон Хиггса связан с так называемым полем Хиггса который, как полагают, заполняют Вселенную. Два элемента (квант поля Хиггса и бозон Хиггса), ответственны за то, чтобы дать другим массу. Названа в честь шотландского ученого Питера Хиггса. С помощью 14 марта 2013 г. официально объявлено о подтверждении существования Бозона Хиггса.

Многие ученые утверждают, что механизм Хиггса разрешил недостающую часть головоломки, чтобы завершить существующую “стандартную модель” физики, которая описывает известные частицы.

Бозон Хиггса принципиально определил массу всему, что существует во Вселенной.

Кварки

Кварки (в переводе бредовые) строительные блоки протонов и нейтронов. Они никогда не одиноки, существуя только в группах. По-видимому, сила, которая связывает кварки вместе, увеличивается с расстоянием, поэтому чем дальше, тем труднее их будет разнять. Поэтому свободные кварки никогда не существуют в природе.

Кварки фундаментальные частицы являются бесструктурными, точечными размером примерно 10 −16 см .

Например, протоны и нейтроны состоят из трех кварков, причем протоны содержат два одинаковых кварка, в то время как нейтроны имеют два разных.

Суперсимметричность

Известно, что фундаментальные «кирпичики» материи фермионы это кварки и лептоны, а хранители силы бозоны это фотоны, глюоны. Теория суперсимметрии говорит о том, что фермионы и бозоны могут превращаться друг в друга.

Предсказываемая теория утверждает, что для каждой известной нам частицы есть родственная, которую мы еще не обнаружили. Например, для электрона это селекрон, кварка – скварк, фотона –фотино, хиггса - хиггсино.

Почему мы не наблюдаем этой суперсимметрии во Вселенной сейчас? Ученые считают, что они намного тяжелее, чем их обычные родственные частицы и чем тяжелее, тем короче их срок службы. По сути, они начинают разрушаться, как только возникают. Создание суперсимметрии требует весьма большого количества энергии, которая только существовала вскоре после большого взрыва и возможно может быть создана в больших ускорителях как большой адронный коллайдер.

Что касается того, почему симметрия возникла, физики предполагают, что симметрия, возможно, была нарушена в каком-то скрытом секторе Вселенной, который мы не можем видеть или касаться, но можем чувствовать только гравитационно.

Нейтрино

Нейтрино легкие субатомные частицы, которые свистят везде с близкой скоростью света. На самом деле, триллионы нейтрино текут через ваше тело в любой момент, хотя они редко взаимодействуют с нормальной материей.

Некоторые происходят от солнца, в то время как другие от космических лучей, взаимодействующих с атмосферой Земли и астрономическими источниками, такими как взрывающиеся звезды на Млечном пути и другие далекие галактики.

Антивещество

Считается, что все нормальные частицы имеют антивещества с одинаковой массой, но противоположным зарядом. Когда материя и встречаются, они уничтожают друг друга. Например, частица антиматерии протона является антипротоном, в то время как партнер антиматерии электрона называется позитроном. Антивещество относится к самым дорогим веществам в мире которые смогли определить люди.

Гравитоны

В области квантовой механики все фундаментальные силы передаются частицами. Например, свет состоит из безмассовых частиц, называемых фотонами, которые несут электромагнитную силу. Точно также гравитон является теоретической частицей, которая несет в себе силу гравитации. Ученым еще предстоит обнаружить гравитоны, которые сложно найти, потому что они так слабо взаимодействуют с веществом.

Нити энергии

В экспериментах крошечные частицы, такие как кварки и электроны, действуют как одиночные точки материи без пространственного распределения. Но точечные объекты усложняют законы физики. Поскольку нельзя приблизиться бесконечно близко к точке, так как действующие силы, могут стать бесконечно большими.

Идея под названием теория суперструн может решить эту проблему. Теория утверждает, что все частицы, вместо того, чтобы быть точечными, на самом деле являются маленькими нитями энергии. Тоесть все объекты нашего мира состоят из вибрирующих нитей и мембран энергии. Ничто не может быть бесконечно близко к нити, потому что одна часть всегда будет немного ближе, чем другая. Эта “лазейка”, похоже, решает некоторые из проблем бесконечности, делая идею привлекательной для физиков. Тем не менее, у ученых до сих пор нет экспериментальных доказательств того, что теория струн верна.

Другой способ решения точечной проблемы – сказать, что само пространство не является непрерывным и гладким, а на самом деле состоит из дискретных пикселей или зерен, иногда называемых пространственно-временной структурой. В этом случае две частицы не смогут бесконечно приближаться друг к другу, потому что они всегда должны быть разделены минимальным размером зерна пространства.

Точка черной дыры

Еще одним претендентом на звание самая маленькая частица во Вселенной является сингулярность (единственная точка) в центре черной дыры. Черные дыры образуются, когда вещество конденсируется в достаточно маленьком пространстве, которое захватывает гравитация, заставляя вещество втянуть вовнутрь, в конечном итоге конденсируясь в единую точку бесконечной плотности. По крайней мере по действующим законам физики.

Но большинство экспертов не считают черные дыры действительно бесконечно плотными. Они считают, что эта бесконечность является результатом внутреннего конфликта между двумя действующими теориями – общей теорией относительностью и квантовой механикой. Они предполагают, что когда теория квантовой гравитации может быть сформулирована, истинная природа черных дыр будет раскрыта.

Планковская длина

Нити энергии и даже самая маленькая частица во Вселенной может оказаться размером с “длину планка”.

Длина планка составляет 1,6 х 10 -35 метров (число 16 перед которым 34 нуля и десятичная точка) - непонятно малый масштаб, который связан с различными аспектами физики.

Планковская длина – «естественная единица» измерения длины, которая была предложена немецким физиком Максом Планком.

Длина Планка слишком мала для любого инструмента, чтобы измерить, но помимо этого, считается, что она представляет собой теоретический предел кратчайшей измеримой длины. Согласно принципу неопределенности, ни один инструмент никогда не должен быть в состоянии измерить что-либо меньшее, потому что в этом диапазоне Вселенная вероятностная и неопределенная.

Эта шкала также считается разграничительной линией между общей теорией относительности и квантовой механикой.

Планковская длина соответствует расстоянию, где гравитационное поле настолько сильно, что оно может начать делать черные дыры из энергии поля.

Очевидно сейчас, самая маленькая частица во Вселенной примерно размером с длину планка: 1,6·10 −35 метров

Выводы

Со школьной скамьи было известно, что самая маленькая частица во Вселенной электрон имеет отрицательный заряд и очень маленькую массу, равную 9,109 х 10 – 31 кг, а классический радиус электрона составляет 2,82 х 10 -15 м.

Однако физики уже оперируют с самыми маленькими частицами во Вселенной планковского размера который равняется примерно 1,6 х 10 −35 метров.

Одним из главных свойств частиц является их способность превращаться друг в друга, рождаться и уничтожаться в результате взаимодействия.
Открытие позитрона, частицы по своим характеристикам похожей на электрон, но имеющей в отличие от электрона положительный единичный заряд, было исключительно важным событием в физике. Еще в 1928 году П. Дирак предложил уравнение для описания релятивистской квантовой механики электрона. Оказалось, что уравнение Дирака имеет два решения, как с положительной, так и с отрицательной энергией. Состояние с отрицательной энергией описывает частицу аналогичную электрону, но имеющую положительный электрический заряд. Позитрон был первой открытой частицей из целого класса частиц, которые получили название античастиц. До открытия позитрона казалась необъяснимой неодинаковая роль положительных и отрицательных зарядов в природе. Почему существует тяжелый положительно заряженный протон, и нет тяжелой частицы с массой протона и отрицательным зарядом? Зато существовал легкий отрицательно заряженный электрон. Открытие в 1932 г. позитрона по существу восстановило зарядовую симметрию для легких частиц и поставило перед физиками проблему поиска античастицы для протона. Другая неожиданность - позитрон является стабильной частицей и может в пустом пространстве существовать бесконечно долго. Однако при столкновении электрона и позитрона происходит их аннигиляция. Электрон и позитрон исчезают, и вместо них рождаются два γ -кванта

e + + e - → 2γ m(e -) = m(e +) = 0.511 Мэв.

Происходит превращение частиц с массой покоя отличной от нуля в частицы с нулевой массой покоя (фотоны), т.е. масса покоя не сохраняется, а превращается в кинетическую энергию.
Наряду с процессом аннигиляции был обнаружен и процесс рождения пары электрон-позитрон. Электрон-позитронные пары легко рождались -квантами с энергией в несколько МэВ в кулоновском поле атомного ядра. В классической физике понятия частицы и волны резко разграничены - одни физические объекты являются частицами, а другие - волнами. Превращение пары электрон-позитрон в фотоны стало дополнительным подтверждением представления о том, что между излучением и веществом много общего. Процессы аннигиляции и рождения пар заставили по-новому осмыслить, что же такое частицы, которые ранее называли элементарными. Частица перестала быть неизменным "кирпичиком" в строении материи. Возникла новая чрезвычайно глубокая концепция взаимного превращения частиц. Оказалось, что частицы могут рождаться и исчезать, превращаясь в другие частицы.
В созданной Э. Ферми теории -распада было показано, что испускаемые в процессе -распада электроны не существуют в ядре, а рождаются в результате распада нейтрона. В результате этого распада исчезает нейтрон n и рождается протон p, электрон e - и электронное антинейтрино e .

n p + e - + e
m(n) = 939.6 Мэв.
m(p) = 938.3 Мэв.
m( e) = ?
τ (n) = 887c.

В результате реакций между антипротоном и протоном p, в зависимости от энергии сталкивающихся частиц, могут рождаться различные частицы

p + → n + + π + + π -
m() = m(p), m() = m(n)
m(π +) = m(π -) = 140 Мэв.
τ (π +) = τ (π -) = 2.6∙ 10 -8 c.
→π + + π - + π 0
→ К + + K -

Положительно заряженный К + -мезон, среднее время жизни которого 1.2∙ 10 -8 с, распадается одним из приведенных ниже способов (справа приведены относительные вероятности распадов.

Λ -гиперон и Δ 0 -резонанс имеют примерно одинаковые массы, распадаются на одни и те же частицы - протон и π - -мезон. Большое различие в их времени жизни обусловлено механизмом распада. Λ -гиперон распадается в результате слабого взаимодействия, а Δ 0 -резонанс - в результате сильного взаимодействия.

Λ → p + π
m(Λ ) = 1116 Мэв.
τ (Λ ) = 2.6∙ 10 -10 c.
Δ 0 → p + π
m(Δ ) = 1232 Мэв.
τ (Δ ) = 10 -23 c

При распаде отрицательного мюона ( -) в конечном состоянии наряду с электроном появляются две нейтральные частицы - мюонное нейтрино ν μ и электронное антинейтрино e . Этот распад происходит в результате слабого взаимодействия.