Мероприятия на 5 и 6 августа. Международный день «Врачи мира за мир»

Допустим, Земле конец. Солнце готово вот-вот взорваться, к планете приближается астероид размером с Техас. Крупные города населены зомби, а в сельской местности фермеры усиленно сажают кукурузу, потому что другие посевы гибнут. Нужно срочно покидать планету, но вот беда - в районе Сатурна никаких червоточин не обнаружено, а сверхсветовых двигателей из далёкой-далёкой галактики не завезли. До ближайшей звезды - больше четырёх световых лет. Сможет ли человечество достичь её, располагая современными технологиями? Ответ не столь очевиден.

Вряд ли кто-то станет утверждать, что глобальная экологическая катастрофа, которая поставит под угрозу существование всей жизни на Земле, может случиться лишь в кино. На нашей планете не раз происходили массовые вымирания, во время которых гибло до 90% существующих видов. Земля переживала периоды глобального оледенения, сталкивалась с астероидами, проходила через всплески вулканической активности.

Конечно, даже во время самых страшных катастроф жизнь никогда не исчезала полностью. Но того же не скажешь о господствовавших на тот момент видах, которые вымирали, освобождая дорогу другим. А кто сейчас господствующий вид? Вот-вот.

Вполне вероятно, что возможность покинуть родной дом и отправиться к звёздам в поисках нового сможет когда-нибудь спасти человечество. Однако вряд ли стоит уповать, что какие-нибудь космические благодетели откроют нам дорогу к звёздам. Стоит прикинуть, каковы наши теоретические возможности добраться до звёзд своими силами.

Космический ковчег

В первую очередь на ум приходят традиционные двигатели на химической тяге. В настоящий момент четырём земным аппаратам (все они были запущены ещё в 1970-х) удалось развить третью космическую скорость, достаточную для того, чтобы навсегда покинуть Солнечную систему.

Наиболее быстрый из них, «Вояджер-1», за прошедшие с момента запуска 37 лет удалился от Земли на расстояние в 130 а.е. (астрономических единиц, то есть 130 расстояний от Земли до Солнца). Каждый год аппарат преодолевает примерно 3,5 а.е. Расстояние до Альфы Центавра - 4,36 световых лет, или 275 725 а.е. С такой скоростью аппарату потребуется почти 79 тысяч лет, чтобы добраться до соседней звезды. Мягко говоря, ждать придётся долго.

Фото Земли (над стрелочкой) с расстояния 6 миллиардов километров, сделанное «Вояджером-1». Это расстояние космический аппарат прошёл за 13 лет.

Можно найти способ лететь быстрее, а можно просто смириться и лететь несколько тысяч лет. Тогда конечной точки достигнут лишь далёкие потомки тех, кто отправился в путешествие. Именно в этом заключается идея так называемого корабля поколений - космического ковчега, представляющего собой рассчитанную на длительное путешествие замкнутую экосистему.

В фантастике есть множество различных сюжетов о кораблях поколений. О них писали Гарри Гаррисон («Пленённая Вселенная»), Клиффорд Саймак («Поколение, достигшее цели»), Брайан Олдисс («Без остановки»), из более современных писателей - Бернард Вербер («Звёздная бабочка»). Довольно часто далёкие потомки первых обитателей вообще забывают о том, откуда они вылетели и в чём цель их путешествия. Или даже начинают считать, что весь существующий мир сводится к кораблю, как, например, рассказывается в романе Роберта Хайнлайна «Пасынки Вселенной». Другой интересный сюжет показан в восьмом эпизоде третьего сезона классического «Звёздного пути», где экипаж «Энтерпрайза» пытается предотвратить столкновение корабля поколений, чьи обитатели забыли о своей миссии, и обитаемой планеты, к которой он направлялся.

Плюс корабля поколений заключается в том, что этот вариант не потребует принципиально новых двигателей. Однако нужно будет разработать самодостаточную экосистему, которая сможет существовать без поставок извне в течение многих тысяч лет. И не стоит забывать о том, что люди могут попросту поубивать друг друга.

Проведённый в начале 1990-х под замкнутым куполом эксперимент «Биосфера-2» продемонстрировал ряд опасностей, которые могут подстерегать людей при таких путешествиях. Это и быстрое разделение коллектива на несколько группировок, враждебно настроенных друг к другу, и неконтролируемое размножение вредителей, которое вызвало недостаток кислорода в воздухе. Даже обычный ветер, как оказалось, играет важнейшую роль - без регулярного раскачивания деревья становятся хрупкими и ломаются.

Решить многие проблемы длительного полёта поможет технология, погружающая людей в длительный анабиоз. Тогда ни конфликты не страшны, ни скука, да и система жизнеобеспечения потребуется минимальная. Главное - обеспечить её энергией на длительный срок. Например, с помощью ядерного реактора.

С темой корабля поколений связан весьма интересный парадокс под названием Wait Calculation («Расчётное ожидание»), описанный учёным Эндрю Кеннеди. Согласно этому парадоксу, в течение некоторого времени после отправки первого корабля поколений на Земле могут быть открыты новые, более быстрые способы передвижения, что позволит стартующим позже кораблям обогнать первоначальных поселенцев. Так что не исключено, что к моменту прибытия пункт назначения уже будет перенаселён далёкими потомками колонизаторов, которые отправились позднее.

Установки для анабиоза в фильме «Чужой».

Верхом на ядерной бомбе

Предположим, нас не устраивает, что до звёзд долетят потомки наших потомков, и мы хотим сами подставить лицо лучам чужого солнца. В этом случае не обойтись без космического корабля, способного разогнаться до скоростей, которые доставят его к соседней звезде за время меньше одной человеческой жизни. И тут поможет старая добрая ядерная бомба.

Идея подобного корабля появилась ещё в конце 1950-х. Космический аппарат предназначался для полётов внутри Солнечной системы, однако его вполне можно было бы использовать и для межзвёздных путешествий. Принцип его работы таков: за кормой устанавливают мощную бронированную плиту. Из космического аппарата в направлении, противоположном полёту, равномерно выбрасываются маломощные ядерные заряды, которые подрываются на небольшом (до 100 метров) расстоянии.

Заряды сконструированы таким образом, чтобы большая часть продуктов взрыва направлена в хвост космического корабля. Отражающая плита принимает на себя импульс и передаёт его кораблю через систему амортизаторов (без неё перегрузки будут губительны для экипажа). От повреждения световой вспышкой, потоками гамма-излучения и высокотемпературной плазмой отражающую плиту защищает покрытие из графитовой смазки, которое заново распыляется после каждого подрыва.

Проект NERVA - пример ядерного ракетного двигателя.

На первый взгляд подобная схема кажется безумной, но она вполне жизнеспособна. Во время одного из ядерных испытаний на атолле Эниветок в 9 метрах от центра взрыва были размещены покрытые графитом стальные сферы. После испытания они были найдены неповреждёнными, что доказывает эффективность графитовой защиты для корабля. Но подписанный в 1963 году «Договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой» поставил крест на этой идее.

Артур Кларк хотел оснастить космический корабль Discovery One из фильма «Космическая одиссея 2001 года» чем-то вроде ядерно-взрывного двигателя. Однако Стэнли Кубрик попросил его отказаться от идеи, испугавшись, что зрители сочтут это пародией на его фильм «Доктор Стрейнджлав, или Как я перестал бояться и полюбил атомную бомбу».

Какую же скорость можно развить с помощью серии ядерных взрывов? Больше всего сведений существует о проекте взрыволёта «Орион», который разрабатывался в конце 1950-х в США при участии учёных Теодора Тейлора и Фримена Дайсона. 400 000-тонный корабль планировалось разогнать до 3,3% скорости света - тогда полёт до системы Альфы Центавра продлился бы 133 года. Однако, согласно нынешним оценкам, подобным способом можно разогнать корабль до 10% скорости света. В таком случае полёт продлится примерно 45 лет, что позволит экипажу дожить до прибытия в пункт назначения.

Конечно, постройка такого корабля - весьма недешёвое дело. По оценке Дайсона, на создание «Ориона» потребовалось бы примерно 3 триллиона долларов в современных ценах. Но если мы узнаем, что нашей планете будет грозить глобальная катастрофа, то, вероятно, именно корабль с ядерно-импульсным двигателем станет последним шансом человечества на выживание.

Газовый гигант

Дальнейшим развитием идей «Ориона» стал проект беспилотного корабля «Дедал», который разрабатывался в 1970-х годах группой учёных из Британского межпланетного общества. Исследователи задались целью спроектировать беспилотный космический аппарат, способный в течение человеческой жизни достичь одной из ближайших звёзд, провести научные исследования и передать на Землю полученную информацию. Главным условием исследования было использование в проекте либо существующих, либо предвидимых в ближайшее время технологий.

Целью полёта была выбрана находящаяся от нас на расстоянии 5,91 светового года звезда Барнарда - в 1970-е годы считалось, что вокруг этой звезды вращается несколько планет. Сейчас мы знаем, что в данной системе нет планет. Разработчики «Дедала» нацелились на создание двигателя, который мог бы доставить корабль до пункта назначения за время, не превышающее 50 лет. В итоге они пришли к идее двухступенчатого аппарата.

Необходимое ускорение обеспечивала серия маломощных ядерных взрывов, происходящих внутри специальной двигательной установки. В качестве топлива использовались микроскопические гранулы из смеси дейтерия с гелием-3, облучаемые потоком высокоэнергетических электронов. Согласно проекту, в двигателе должно было происходить до 250 взрывов в секунду. Соплом служило мощное магнитное поле, создаваемое силовыми установками корабля.

По плану первая ступень корабля работала в течение двух лет, разгоняя корабль до 7% скорости света. После этого «Дедал» сбрасывал отработанную двигательную установку, избавляясь от большей части своей массы, и запускал вторую ступень, которая позволяла ему разогнаться до окончательной скорости в 12,2% световой. Это позволило бы достичь звезды Барнарда через 49 лет после запуска. Ещё 6 лет ушло бы на передачу сигнала на Землю.

Полная масса «Дедала» составляла 54 тысячи тонн, из которых 50 тысяч приходилось на термоядерное горючее. Однако предполагаемый гелий-3 чрезвычайно редко встречается на Земле - зато его полно в атмосферах газовых гигантов. Поэтому авторы проекта предполагали добыть гелий-3 на Юпитере с помощью «плавающего» в его атмосфере автоматизированного завода; на весь процесс добычи ушло бы примерно 20 лет. На той же орбите Юпитера предполагалось осуществить окончательную сборку корабля, который бы затем стартовал к другой звёздной системе.

Самым сложным элементом во всей концепции «Дедала» была именно добыча гелия-3 из атмосферы Юпитера. Для этого нужно было долететь до Юпитера (что тоже не так-то легко и быстро), основать базу на одном из спутников, построить завод, где-то хранить топливо… И это уже не говоря о мощных радиационных поясах вокруг газового гиганта, которые дополнительно усложнили бы жизнь технике и инженерам.

Ещё одна проблема состояла в том, что «Дедал» не имел возможности погасить скорость и выйти на орбиту звезды Барнарда. Корабль и выпущенные им зонды просто бы прошли мимо звезды по пролётной траектории, преодолев всю систему за несколько дней.

Сейчас международная группа из двадцати учёных и инженеров, действующая под эгидой Британского межпланетного сообщества, работает над проектом корабля «Икар». «Икар» - своеобразный «римейк» Дедала, учитывающий накопленные за последние 30 лет знания и технологии. Одно из основных направлений работы - поиск других видов топлива, которое можно было бы добыть и на Земле.

Со скоростью света

Можно ли разогнать космический корабль до скорости света? Эту задачу можно решить несколькими способами. Наиболее перспективный из них - аннигиляционный двигатель на антиматерии. Принцип его действия заключается в следующем: антиматерия подаётся в рабочую камеру, где она входит в соприкосновение с обычным веществом, порождая управляемый взрыв. Ионы, возникшие в процессе взрыва, выбрасываются через сопло двигателя, создавая тягу. Из всех возможных двигателей аннигиляционный теоретически позволяет достичь наибольших скоростей. Взаимодействие материи и антиматерии высвобождает колоссальное количество энергии, а скорость истечения образующихся в ходе этого процесса частиц близка к световой.

Но тут встаёт вопрос добычи топлива. Само по себе антивещество уже давно перестало быть фантастикой - учёным впервые удалось синтезировать антиводород ещё в 1995 году. Но добыть его в достаточных количествах невозможно. В настоящее время антиматерию можно получить лишь с помощью ускорителей частиц. При этом количество создаваемого ими вещества измеряется мизерными долями граммов, а его стоимость составляет астрономические суммы. На одну миллиардную грамма антивещества учёным из Европейского центра ядерных исследований (того самого, где создали Большой адронный коллайдер) пришлось потратить несколько сотен миллионов швейцарских франков. С другой стороны, стоимость производства будет постепенно уменьшаться и в будущем может достичь куда более приемлемых значений.

Кроме того, придётся придумать способ, позволяющий хранить антивещество - ведь при соприкосновении с обычной материей оно мгновенно аннигилируется. Одно из решений - охлаждать антивещество до сверхнизких температур и использовать магнитные ловушки, не позволяющие ему соприкасаться со стенками бака. На данный момент рекордное время хранения антивещества составляет 1000 секунд. Не годы, конечно, но с учётом того, что в первый раз антивещество удалось удержать лишь на 172 миллисекунды, прогресс есть.

И даже быстрее

Многочисленные фантастические фильмы приучили нас к тому, что добраться до других звёздных систем можно куда быстрее, чем за несколько лет. Достаточно включить варп-двигатель или гиперпространственный привод, откинуться поудобнее в кресле - и уже через несколько минут оказаться на другом краю галактики. Теория относительности запрещает путешествия со скоростями, превышающими скорость света, но в то же время оставляет лазейки, позволяющие обойти эти ограничения. Если бы могли разорвать или растянуть пространство-время, то смогли бы путешествовать быстрее света, не нарушая никаких законов.

Разрыв пространства более известен как кротовая нора, или червоточина. Физически она представляет собой тоннель, связывающий две удалённые области пространства-времени. Почему бы не использовать такой тоннель для путешествия в дальний космос? Дело в том, что создание подобной кротовый норы требует наличия в разных точках вселенной двух сингулярностей (это то, что находится за горизонтом событий чёрных дыр, - фактически гравитация в чистом виде), которые смогут разорвать пространство-время, создав тоннель, позволяющий путешественникам «срезать» путь через гиперпространство.

Кроме того, для поддержания подобного тоннеля в устойчивом состоянии необходимо, чтобы он был заполнен экзотической материей с отрицательной энергией, - а существование подобной материи до сих пор не доказано. В любом случае, создать кротовую нору по силам лишь сверхцивилизации, которая на много тысяч лет будет опережать нынешнюю в развитии и чьи технологии с нашей точки зрения будут похожи на волшебство.

Второй, более доступный вариант - «растягивание» пространства. В 1994 году мексиканский физик-теоретик Мигель Алькубьерре предположил, что можно изменить его геометрию, создав волну, сжимающую пространство впереди корабля и расширяющую его сзади. Таким образом звездолёт окажется в «пузыре» искривлённого пространства, которое само будет двигаться быстрее света, благодаря чему корабль не нарушит фундаментальных физических принципов. По словам самого Алькубьерре, .

Правда, сам учёный счёл, что реализовать подобную технологию на практике будет невозможно, так как для этого потребуется колоссальное количестве массы-энергии. Первые вычисления давали значения, превышающие массу всей существующей Вселенной, последующие уточнения уменьшили её до «всего лишь» юпитерианской.

Но в 2011 году Гарольд Уайт, возглавляющий исследовательскую группу Eagleworks при NASA, провёл расчёты, которые показали, что если изменить некоторые параметры, то для создания пузыря Алькубьерре может потребоваться куда меньше энергии, чем считалось ранее, и перерабатывать целую планету уже не потребуется. Сейчас группа Уайта прорабатывает возможность «пузыря Алькубьерре» на практике.

Если у экспериментов будут результаты, то это станет первым маленьким шажком к тому, чтобы создать двигатель, позволяющий путешествовать в 10 раз быстрее скорости света. Разумеется, космический аппарат, использующий пузырь Алькубьерре, отправится в путешествие через много десятков, а то и сотен лет. Но сама перспектива того, что такое действительно возможно, уже захватывает дух.

Полёт «Валькирии»

Практически все предлагаемые проекты звездолётов имеют один существенный недостаток: они весят десятки тысяч тонн, и их создание требует огромного количество запусков и сборочных операций на орбите, что увеличивает стоимость постройки на порядок. Но если человечество всё же научится получать большое количество антиматерии, у него появится альтернатива этим громоздким конструкциям.

В 1990-х годах писатель Чарльз Пелегрино и физик Джим Пауэлл предложили проект звездолёта, известный как «Валькирия». Его можно описать как нечто вроде космического тягача. Корабль представляет собой связку из двух аннигиляционных двигателей, соединённых между собой сверхпрочным тросом длиной 20 километров. В центре связки находятся несколько отсеков для экипажа. Корабль использует первый двигатель, чтобы набрать скорость, близкую к световой, а второй - чтобы погасить её при выходе на орбиту вокруг звезды. Благодаря использованию троса вместо жёсткой конструкции масса корабля составляет всего 2100 тонн (для сравнения, масса МКС - 400 тонн), из которых 2000 тонн приходятся на двигатели. Теоретически такой корабль может разогнаться до скорости в 92% от скорости света.

Модифицированный вариант данного корабля, названный Venture Star, показан в фильме «Аватар» (2011), одним из научных консультантов которого был как раз Чарльз Пелегрино. Venture Star отправляется в путешествие, разгоняясь при помощи лазеров и 16-километрового солнечного паруса, после чего тормозит у Альфы Центавра с помощью двигателя на антиматерии. На обратном пути последовательность меняется. Корабль способен разогнаться до 70% скорость света и долететь до Альфа Центавра менее чем за 7 лет.

Без топлива

Как существующие, так и перспективные ракетные двигатели имеют одну проблему - топливо всегда составляет большую часть их массы на старте. Однако есть проекты звездолётов, которым вообще не нужно будет брать с собой топливо.

В 1960 году физик Роберт Бассард предложил концепцию двигателя, который использовал бы находящийся в межзвёздном пространстве водород в качестве горючего для термоядерного двигателя. К сожалению, несмотря на всю привлекательность идеи (водород - самый распространённый элемент во Вселенной), у неё есть ряд теоретических проблем, начиная от способа сбора водорода и заканчивая расчётной максимальной скоростью, которая вряд ли превысит 12% световой. А значит, до системы Альфа Центавра придётся лететь минимум полвека.

Другая интересная концепция - применение солнечного паруса. Если построить на земной орбите или на Луне огромный сверхмощный лазер, то его энергию можно было бы использовать, чтобы разогнать оснащённый гигантским солнечным парусом звездолёт до достаточно больших скоростей. Правда, по расчётам инженеров, чтобы придать пилотируемому кораблю массой 78 500 тонн скорость в половину световой, потребуется солнечный парус диаметром в 1000 километров.

Ещё одна очевидная проблема звездолёта с солнечным парусом заключается в том, что его нужно как-то затормозить. Одно из её решений - при подлёте к цели выпустить позади звездолёта второй, меньший по размерам парус. Основной же отсоединится от корабля и продолжит самостоятельное путешествие.

***

Межзвёздное путешествие - очень сложное и дорогостоящее предприятие. Создать корабль, способный за относительно небольшой срок покрыть космическое расстояние, - одна из самых грандиозных задач, стоящих перед человечеством в будущем. Конечно, это потребует усилий нескольких государств, если не всей планеты. Сейчас это кажется утопией - у правительств слишком много забот и слишком много способов потратить деньги. Полёт на Марс в миллионы раз проще полёта к Альфе Центавра - и тем не менее вряд ли сейчас кто-то рискнёт назвать год, когда он всё же состоится.

Оживить работы в этом направлении может или глобальная опасность, грозящая всей планете, или же создание единой планетарной цивилизации, которая сможет преодолеть внутренние склоки и захочет покинуть свою колыбель. Время для этого ещё не пришло - но это не значит, что оно не придёт никогда.

12 апреля 2016 года знаменитый британский физик Стивен Хокинг и российский бизнесмен и меценат Юрий Мильнер объявили о выделении $100 млн на финансирование проекта Breakthrough Starshot . Целью проекта стала разработка технологий для создания космических аппаратов, способных совершить межзвездный полет к альфе Центавра.

В тысячах фантастических романов описаны гигантские фотонные звездолеты размером с небольшой (или большой) город, уходящие в межзвездный полет с орбиты нашей планеты (реже - с поверхности Земли). Но, по замыслу авторов проекта Breakthrough Starshot , все будет происходить совсем не так: в один знаменательный день две тысячи какого-то года к одной из ближайших звезд, альфе Центавра, стартует не один и не два, а сразу сотни и тысячи маленьких звездолетиков размером с ноготь и массой в 1 г. И у каждого из них будет тончайший солнечный парус площадью в 16 м 2 , который и понесет звездолет со все возрастающей скоростью вперед - к звездам.

«Выстрел к звёздам»

Основой проекта Breakthrough Starshot стала статья профессора физики Калифорнийского университета в Санта-Барбаре Филипа Любина «План для межзвездных полетов» (A Roadmap to Interstellar Flight ). Основная заявленная цель проекта состоит в том, чтобы сделать межзвездные полеты возможными уже при жизни следующего поколения людей, то есть не через столетия, а через десятилетия.

Сразу после официального анонса программы Starshot на авторов проекта обрушилась волна критики со стороны ученых и технических специалистов в различных областях. Критически настроенные эксперты отмечали многочисленные некорректные оценки и просто «белые пятна» в плане программы. Некоторые замечания были приняты во внимание, и план полета был несколько скорректирован в первой итерации.

Итак, межзвездный зонд будет представлять собой космический парусник с электронным модулем StarChip массой 1 г, соединенным сверхпрочными стропами с солнечным парусом площадью 16 м 2 , толщиной 100 нм и массой 1 г. Конечно, света нашего Солнца недостаточно, чтобы разогнать даже столь легкую конструкцию до скоростей, при которых межзвездные путешествия не будут длиться тысячелетиями. Поэтому главная изюминка проекта StarShot - это разгон с помощью мощного лазерного излучения, которое фокусируется на парусе. По оценкам Любина, при мощности лазерного луча 50–100 ГВт ускорение составит около 30 000 g, и за несколько минут зонд достигнет скорости в 20% световой. Полет к альфе Центавра продлится около 20 лет.

Вопросы без ответов: волна критики

Филип Любин в своей статье приводит численные оценки пунктов плана, однако многие ученые и специалисты относятся к этим данным весьма критически.
Конечно, для проработки столь амбициозного проекта, как Breakthrough Starshot , требуются годы работы, да и $100 млн - не такая уж и большая сумма для работы подобного масштаба. В особенности это касается наземной инфраструктуры - фазированной решетки лазерных излучателей. Установка такой мощности (50–100 ГВт) потребует гигантского количества энергии, то есть рядом нужно будет построить как минимум десяток крупных электростанций. Помимо этого, потребуется отводить от излучателей огромное количество тепла на протяжении нескольких минут, и как это делать - пока что совсем неясно. Таких вопросов без ответов в проекте Breakthrough Starshot огромное количество, однако пока что работа только началась.
«В научный совет нашего проекта входят ведущие специалисты, ученые и инженеры в различных релевантных областях, включая двух нобелевских лауреатов, - говорит Юрий Мильнер. - И я слышал весьма сбалансированные оценки реализуемости этого проекта. При этом мы, безусловно, полагаемся на совокупную экспертизу всех членов нашего научного совета, но в то же время открыты для более широкой научной дискуссии».

Под звёздными парусами

Одна из ключевых деталей проекта - это солнечный парус. В исходном варианте площадь паруса изначально составляла всего 1 м 2 , и из-за этого он мог не выдержать нагрева при разгоне в поле лазерного излучения. Новый вариант использует парус площадью 16 м 2 , так что тепловой режим будет хотя и довольно жестким, но, по предварительным оценкам, не должен расплавить или разрушить парус. Как пишет сам Филип Любин, в качестве основы для паруса планируется использовать не металлизированные покрытия, а полностью диэлектрические многослойные зеркала: «Такие материалы характеризуются умеренным коэффициентом отражения и чрезвычайно низким поглощением. Скажем, оптические стекла для волоконной оптики рассчитаны на большие световые потоки и имеют поглощение порядка двадцати триллионных на 1 мкм толщины». Добиться хорошего коэффициента отражения от диэлектрика при толщине паруса в 100 нм, а это много меньше длины волны, непросто. Но авторы проекта возлагают некоторые надежды на использование новых подходов, таких как монослои метаматериала с отрицательным показателем преломления.

Солнечный парус

Один из главных элементов проекта - солнечный парус площадью в 16 м 2 и массой всего 1 г. В качестве материала паруса рассматриваются многослойные диэлектрические зеркала, отражающие 99,999% падающего света (по предварительным расчетам этого должно хватить, чтобы парус не расплавился в поле излучения 100-ГВт лазера). Более перспективный подход, позволяющий сделать толщину паруса меньшей длины волны отражаемого света, - это использование в качестве основы паруса монослоя метаматериала с отрицательным показателем преломления (такой материал к тому же имеет наноперфорацию, что еще уменьшает его массу). Второй вариант - это использование материала не с высоким коэффициентом отражения, а с низким коэффициентом поглощения (10 −9), такого, как оптические материалы для световодов.

«Кроме того, нужно учитывать, что отражение от диэлектрических зеркал настраивается на узкий диапазон длин волн, а по мере ускорения зонда эффект Доплера сдвигает длину волны более чем на 20%, - говорит Любин. - Мы это учитывали, поэтому отражатель будет настроен примерно на двадцатипроцентную ширину полосы излучения. Мы спроектировали такие отражатели. Если необходимо, доступны и отражатели с большей шириной полосы».

Лазерная установка

Основная силовая установка звездолета не полетит к звездам - она будет расположена на Земле. Это наземная фазируемая решетка лазерных излучателей размером 1×1 км. Суммарная мощность лазеров должна составлять от 50 до 100 ГВт (это эквивалентно мощности 10–20 Красноярских ГЭС). Предполагается с помощью фазирования (то есть изменения фаз на каждом отдельном излучателе) сфокусировать излучение с длиной волны 1,06 мкм со всей решетки в пятно диаметром несколько метров на расстояниях вплоть до многих миллионов километров (предельная точность фокусировки 10 −9 радиана). Но такой фокусировке сильно мешает турбулентная атмосфера, размывающая луч в пятно размером примерно в угловую секунду (10 −5 радиана). Улучшения на четыре порядка предполагается достичь с помощью адаптивной оптики (АО), которая будет компенсировать атмосферные искажения. Лучшие системы адаптивной оптики в современных телескопах уменьшают размытие до 30 угловых миллисекунд, то есть до намеченной цели остается еще примерно два с половиной порядка. «Чтобы победить мелкомасштабную атмосферную турбулентность, фазируемая решетка должна быть разбита на очень мелкие элементы, размер излучающего элемента для нашей длины волны должен составлять не более 20–25 см, - объясняет Филип Любин. - Это минимум 20 млн излучателей, но такое количество меня не пугает. Для обратной связи в системе АО мы планируем использовать много опорных источников - бакенов - и на зонде, и на материнском корабле, и в атмосфере. Кроме того, мы будем отслеживать зонд на пути к цели. Мы также хотим использовать звезды как бакен для настройки фазирования решетки при приеме сигнала от зонда по прибытии, но для надежности будем отслеживать зонд».

Прибытие

Но вот зонд прибыл в систему альфы Центавра, сфотографировал окрестности системы и планеты (если они есть). Эту информацию нужно каким-то образом передать на Землю, причем мощность лазерного передатчика зонда ограничена единицами ватт. А через пять лет этот слабый сигнал нужно принять на Земле, выделив из фонового излучения звезды. По замыслу авторов проекта, у цели зонд маневрирует таким образом, что парус превращается в линзу Френеля, фокусирующую сигнал зонда в направлении Земли. Согласно оценкам, идеальная линза при идеальной фокусировке и идеальной ориентации усиливает сигнал мощностью 1 Вт до 10 13 Вт в изотропном эквиваленте. Но как рассмотреть этот сигнал на фоне гораздо более мощного (на 13–14 порядков!) излучения звезды? «Свет от звезды на самом деле довольно слаб, поскольку ширина линии нашего лазера очень мала. Узкая линия - ключевой фактор в сокращении фона, - говорит Любин. - Идея сделать из паруса линзу Френеля на основе тонкопленочного дифракционного элемента достаточно сложна и требует большой предварительной работы, чтобы понять, как именно лучше сделать это. Этот пункт на самом деле - один из главных в нашем плане проекта».

Межзвездный полет - вопрос не веков, а десятилетий

Юрий Мильнер ,
российский бизнесмен и меценат,
основатель фонда Breakthrough Initiatives:
За последние 15 лет произошли существенные, можно сказать, революционные продвижения по трем технологическим направлениям: миниатюризация электронных компонентов, создание нового поколения материалов, также удешевление и увеличение мощности лазеров. Сочетание этих трех тенденций приводит к теоретической возможности разогнать наноспутник до почти релятивистских скоростей. На первом этапе (5–10 лет) мы планируем провести более углубленное научно-инженерное исследование, чтобы понять, насколько этот проект реализуем. На сайте проекта есть список из примерно 20 серьезных технических проблем, без решения которых мы не сможем идти дальше. Это не окончательный список, но, опираясь на мнение научного совета, мы считаем, что первый этап проекта имеет достаточную мотивацию. Я знаю, что проект звездного паруса подвергается серьезной критике со стороны специалистов, но думаю, что позиция некоторых критически настроенных экспертов связана с не совсем точным пониманием того, что же мы реально предлагаем. Мы финансируем не полет к другой звезде, а вполне реалистичные многоцелевые разработки, связанные с идеей межзвездного зонда лишь общим направлением. Эти технологии найдут применение и для полетов в Солнечной системе, и для защиты от опасных астероидов. Но постановка столь амбициозной стратегической цели, как межзвездный полет, представляется оправданной в том смысле, что развитие технологий за последние 10–20 лет, вероятно, делает реализацию подобного проекта вопросом не веков, как многие предполагали, а скорее - десятилетий.

С другой стороны, фазированная решетка оптических излучателей / приемников излучения общей апертурой в километр - это инструмент, способный видеть экзопланеты с расстояния десятков парсек. Используя приемники с перестраиваемой длиной волны, можно определить состав атмосферы экзопланет. Нужны ли вообще в таком случае зонды? «Конечно, использование фазируемой решетки как очень большого телескопа открывает новые возможности в астрономии. Но, - добавляет Любин, - мы планируем добавить к зонду инфракрасный спектрометр в качестве более долговременной программы в дополнение к камере и другим датчикам. У нас отличная группа фотоники в Калифорнийском университете в Санта-Барбаре, которая является частью коллаборации».

Но в любом случае, по словам Любина, первые полеты будут совершаться в пределах Солнечной системы: «Поскольку мы можем посылать огромное количество зондов, это дает нам много разных возможностей. Мы также можем посылать подобные маленькие (wafer-scale , то есть на чипе) зонды на обычных ракетах и использовать те же технологии для изучения Земли или планет и их спутников в Солнечной системе».

Редакция благодарит газету «Троицкий вариант - наука» и ее главного редактора Бориса Штерна за помощь в подготовке статьи.

Кинематика межзвёздных полётов

Пусть полёт туда и полёт обратно состоят из трёх фаз: равноускоренного разгона, полёта с постоянной скоростью и равноускоренного торможения.

Собственное время любых часов имеет вид:

где - скорость этих часов. Земные часы неподвижны (), и их собственное время равно координатному . Часы космонавтов имеют переменную скорость . Так как корень под интегралом остаётся всё время меньше единицы, время этих часов, независимо от явного вида функции , всегда оказываются меньше . В результате .

Если разгон и торможение проходят релятивистски равноускоренно (с параметром собственного ускорения ) в течение , а равномерное движение - , то по часам корабля пройдёт время :

, где - гиперболический арксинус

Рассмотрим гипотетический полёт к звёздной системе Альфа Центавра , удалённой от Земли на расстояние в 4,3 световых года . Если время измеряется в годах, а расстояния в световых годах, то скорость света равна единице, а единичное ускорение св.год/год² близко к ускорению свободного падения и примерно равно 9,5 м/c².

Пусть половину пути космический корабль двигается с единичным ускорением, а вторую половину - с таким же ускорением тормозит (). Затем корабль разворачивается и повторяет этапы разгона и торможения. В этой ситуации время полёта в земной системе отсчёта составит примерно 12 лет, тогда как по часам на корабле пройдёт 7,3 года. Максимальная скорость корабля достигнет 0,95 от скорости света.

За 64 года собственного времени космический корабль с единичным ускорением потенциально может совершить путешествие (вернувшись на Землю) к галактике Андромеды , удалённой на 2,5 млн св. лет . На Земле за время такого полёта пройдёт около 5 млн лет. Развивая вдвое большее ускорение (к которому тренированный человек вполне может привыкнуть при соблюдении ряда условий и использования ряда приспособлений, например, анабиоза), можно подумать даже об экспедиции к видимому краю Вселенной (около 14 млрд. св. лет), которая займёт у космонавтов порядка 50 лет; правда, возвратившись из такой экспедиции (через 28 млрд. лет по земным часам), её участники рискуют не застать в живых не то что Землю и Солнце, но даже нашу Галактику. Исходя из этих расчётов, чтобы космонавты избежали футурошока по возвращении на Землю, разумный радиус доступности для межзвёздных экспедиций с возвратом не должен превышать нескольких десятков световых лет, если, конечно, не будут открыты какие-либо принципиально новые физические принципы перемещения в пространстве-времени. Впрочем, обнаружение многочисленных экзопланет даёт основания полагать, что планетные системы встречаются у достаточно большой доли звёзд, поэтому космонавтам будет что исследовать и в этом радиусе (например, планетные системы ε Эридана и Глизе 581).

Пригодность различных типов двигателей для межзвездных полётов

Пригодность различных типов двигателей для межзвездных полётов была рассмотрена на заседании Британского межпланетного общества в 1973 г. Тони Мартином . Электроракетный двигатель с ядерным реактором имеет небольшое ускорение, поэтому потребуются столетия для достижения нужной скорости, что позволяет использовать его только в кораблях поколений . Термические ядерные двигатели типа NERVA имеют достаточную величину тяги, но низкую скорость истечения рабочей массы, порядка 5-10 км/сек, поэтому для разгона до нужной скорости потребуется огромное количество топлива. Таким образом корабль с таким двигателем будет еще на несколько порядков тихоходней корабля с электрореактивным двигателем. Для полета к соседней звезде на таком корабле уйдут десятки и сотни тысяч тысяч лет.(полет до альфы центавра на скорости 30 км/сек займет 40 тыс лет). Для прямоточного двигателя потребуется воронка огромного диаметра для сбора разреженного межзвездного водорода, имеющего плотность 1 атом на кубический сантиметр. Если для сбора межзвездного водорода использовать сверхмощное электромагнитное поле, то силовые нагрузки на генерирующую катушку окажутся настолько велики, что их преодоление кажется маловероятным даже для техники будущего.

Проекты межзвездных экспедиций

Проекты звездолётов-ракет

Проект «Орион»

Ракетный корабль по проекту «Дедал» оказался таким громадным, что строить его пришлось бы в открытом космосе. Он должен был весить 54 000 т (почти весь вес - ракетное топливо) и мог бы разогнаться до 7,1 % скорости света, неся на себе полезную нагрузку весом 450 т. В отличие от проекта «Орион», рассчитанного на использование крохотных атомных бомб, проект «Дедал» предусматривал использование миниатюрных водородных бомб со смесью дейтерия и гелия-3 и системой зажигания при помощи электронных лучей. Но огромные технические проблемы и опасения, связанные с ядерным двигателем, привели к тому, что проект «Дедал» также был отложен на неопределённое время.

Технологические идеи Дедала использованы в проекте термоядерного звездолета «Икарус» .

Проекты звездолётов, движителем которых является давление электромагнитных волн.

В 1971 году в докладе Г. Маркса на симпозиуме в Бюракане было предложено использовать для межзвёздных перелётов лазеры рентгеновского диапазона . Позже возможность использования этого типа движителя исследовалась НАСА . В результате был сделан следующий вывод: «Если будет найдена возможность создания лазера, работающего в рентгеновском диапазоне длин волн, то можно говорить о реальной разработке летательного аппарата (разгоняемого лучом такого лазера), который сможет покрывать расстояния до ближайших звёзд значительно быстрее, чем все известные в настоящее время системы с ракетными двигателями. Расчёты показывают, что с помощью космической системы, рассмотренной в данной работе, можно достичь звезды Альфа Центавра… примерно за 10 лет» .

В 1985 году Р. Форвардом была предложена конструкция межзвёздного зонда, разгоняемого энергией микроволнового излучения. Проектом предусматривалось, что зонд достигнет ближайших звёзд за 21 год.

На 36-м Международном астрономическом конгрессе был предложен проект лазерного звездолёта, движение которого обеспечивается энергией лазеров оптического диапазона, расположенных на орбите вокруг Меркурия . По расчётам, путь звездолёта этой конструкции до звезды Эпсилон Эридана (10,8 световых лет) и обратно занял бы 51 год.

Преимуществом солнечного парусника является отсутствие топлива на борту. Его недостатком является невозможность использования паруса для путешествия назад к Земле, поэтому он хорош для запуска автоматических зондов, станций и грузовых кораблей, но малопригоден для пилотируемых полётов с возвратом (либо космонавтам нужно будет взять с собой второй лазер с запасом топлива для установки в пункте назначения, что фактически сводит на нет все преимущества парусника).

Аннигиляционные двигатели

Теоретические расчёты американских физиков Ронана Кина и Вей-мин Чжана показывают, что на основе современных технологий возможно создание аннигиляционного двигателя, способного разогнать космический корабль до 70 % от скорости света. Предложенный ими двигатель быстрее других теоретических разработок благодаря особому устройству сопла. Однако основными проблемами при создании аннигиляционных ракет (англ. ) с подобными двигателями являются получение нужного количества антивещества, а также его хранение . По состоянию на май 2011 года рекордное время хранения атомов антиводорода составило 1000 секунд (~16,5 минут) . По оценкам НАСА 2006 года, производство миллиграмма позитронов стоило примерно 25 миллионов долларов США . По оценке 1999 года, один грамм антиводорода стоил бы 62,5 триллиона долларов .

Прямоточные двигатели, работающие на межзвёздном водороде

Основная составляющая массы современных ракет - это масса топлива, необходимого ракете для разгона. Если удастся каким-нибудь образом использовать в качестве рабочего тела и топлива окружающую ракету среду, можно значительно сократить массу ракеты и достичь за счёт этого больших скоростей движения.

Ещё одним недостатком термоядерного прямоточного двигателя является ограниченность скорости, которой может достичь оснащённый им корабль (не более 0,119c = 35,7 тыс. км/с). Это связано с тем, что при улавливании каждого атома водорода (который можно в первом приближении считать неподвижным относительно звёзд) корабль теряет определённый импульс, который удастся компенсировать тягой двигателя только если скорость не превышает некоторого предела. Для преодоления этого ограничения необходима как можно более полная утилизация кинетической энергии улавливаемых атомов, что представляется достаточно трудной задачей.

Допустим, экран уловил 4 атома водорода. При работе термоядерного реактора четыре протона превращаются в одну альфа-частицу, два позитрона и два нейтрино. Для простоты пренебрежём нейтрино (учёт нейтрино потребует точного расчёта всех стадий реакции, а потери на нейтрино составляют около процента), а позитроны проаннигилируем с 2 электронами, оставшимися от атомов водорода после изъятия из них протонов. Ещё 2 электрона пойдут на то, чтобы превратить альфа-частицу в нейтральный атом гелия, который благодаря полученной от реакции энергии будет ускорен в сопле двигателя.

Итоговое уравнение реакции без учёта нейтрино:

4править] Фотонный двигатель на магнитных монополях

Если справедливы некоторые варианты теорий Великого объединения , такие как модель "т Хоофта - Полякова , то можно построить фотонный двигатель, не использующий антивещество, так как магнитный монополь гипотетически может катализировать распад протона на позитрон и π 0 -мезон :

π 0 быстро распадается на 2 фотона, а позитрон аннигилирует с электроном, в итоге атом водорода превращается в 4 фотона, и нерешённой остаётся только проблема зеркала.

Фотонный двигатель на магнитных монополях мог бы работать и по прямоточной схеме.

В то же время в большинстве современных теорий Великого объединения магнитные монополи отсутствуют, что ставит под сомнение эту привлекательную идею.

Системы торможения Межзвездных Кораблей

Предложены несколько способов:

1. Торможение на внутренних источниках - ракетное

2. Торможение за счёт лазерного луча, присылаемого с Солнечной Системы.

3. Торможение магнитным полем с использованием Магнитного Паруса Зубрина на сверхпроводниках.

Корабли поколений

Возможны также межзвёздные путешествия с использованием звездолётов, реализующих концепцию «кораблей поколений » (например, по типу колоний О’Нейла). В таких звездолётах создаётся и поддерживается замкнутая биосфера , способная поддерживать и воспроизводить себя в течение нескольких тысяч лет. Полёт происходит с небольшой скоростью и занимает очень долгое время, на протяжении которого успевают смениться многие поколения космонавтов.

Опасности внешней среды

Эту проблему подробно рассмотрел Иван Корзников в статье "Реальности межзвездных полётов" . Столкновение с межзвездной пылью будет происходить на околосветовых скоростях и по физическому воздействию напоминать микровзрывы. При скоростях больше 0,1 С защитный экран должен иметь толщину десятки метров и массу сотни тысяч тонн. Но этот экран будет надёжно защищать только от межзвездной пыли. Столкновение с метеоритом будет иметь фатальные последствия. Иван Корзников приводит расчеты, что при скорости более 0,1 С космический корабль не успеет изменить траекторию полёта и избежать столкновения. Иван Корзников считает, что при субсветовой скорости космический корабль разрушится до достижения цели. По его мнению межзвездное путешествие возможно только при существенно меньших скоростях (до 0,01 С).

Энергия и ресурсы

Для межзвездного полёта потребуются большие запасы энергии и ресурсов, которые придется везти с собой. Это одна из малоизученных проблем в межзвездной космонавтике.

Например, самый проработанный на сегодняшний день проект «Дедал» с импульсным термоядерным двигателем за полвека достиг бы звезды Барнарда (шесть световых лет), затратив 50 тысяч тонн термоядерного горючего (смесь дейтерия и гелия-3) и доставив к цели полезную массу в 4 тысячи тонн .

Сверхсветовое движение

В научно-фантастических произведениях нередко упоминаются методы межзвёздных перелётов, основанные на перемещении в пространстве быстрее скорости света в вакууме. Хотя