Наименьшее значение функции без производной. Наибольшее и наименьшее значение функции на отрезке

Дорогие друзья! В группу заданий связанных с производной входят задачи — в условии дан график функции, несколько точек на этом графике и стоит вопрос:

В какой точке значение производной наибольшее (наименьшее)?

Кратко повторим:

Производная в точке равна угловому коэффициенту касательной проходящей через эту точку графика.

У гловой коэффициент касательной в свою очередь равен тангенсу угла наклона этой касательной.

*Имеется ввиду угол между касательной и осью абсцисс.

1. На интервалах возрастания функции производная имеет положительное значение.

2. На интервалах её убывания производная имеет отрицательное значение.


Рассмотрим следующий эскиз:


В точках 1,2,4 производная функции имеет отрицательное значение, так как данные точки принадлежат интервалам убывания.

В точках 3,5,6 производная функции имеет положительное значение, так как данные точки принадлежат интервалам возрастания.

Как видим, со значением производной всё ясно, то есть определить какой она имеет знак (положительный или отрицательный) в определённой точке графика совсем несложно.

При чём, если мы мысленно построим касательные в этих точках, то увидим, что прямые проходящие через точки 3, 5 и 6 образуют с осью оХ углы лежащие в пределах от 0 до 90 о, а прямые проходящие через точки 1, 2 и 4 образуют с осью оХ углы в пределах от 90 о до 180 о.

*Взаимосвязь понятна: касательные проходящие через точки принадлежащие интервалам возрастания функции образуют с осью оХ острые углы, касательные проходящие через точки принадлежащие интервалам убывания функции образуют с осью оХ тупые углы.

Теперь важный вопрос!

А как изменяется значение производной? Ведь касательная в разных точках графика непрерывной функции образует разные углы, в зависимости от того, через какую точку графика она проходит.

*Или, говоря простым языком, касательная расположена как бы «горизонтальнее» или «вертикальнее». Посмотрите:

Прямые образуют с осью оХ углы в пределах от 0 до 90 о


Прямые образуют с осью оХ углы в пределах от 90 о до 180 о


Поэтому, если будут стоять вопросы:

— в какой из данных точек графика значение производной имеет наименьше значение?

— в какой из данных точек графика значение производной имеет наибольшее значение?

то для ответа необходимо понимать, как изменяется значение тангенса угла касательной в пределах от 0 до 180 о.

*Как уже сказано, значение производной функции в точке равно тангенсу угла наклона касательной к оси оХ.

Значение тангенса изменяется следующим образом:

При изменении угла наклона прямой от 0 о до 90 о значение тангенса, а значит и производной, изменяется соответственно от 0 до +∞;

При изменении угла наклона прямой от 90 о до 180 о значение тангенса, а значит и производной, изменяется соответственно –∞ до 0.

Наглядно это видно по графику функции тангенса:

Говоря простым языком:

При угле наклона касательной от 0 о до 90 о

Чем он ближе к 0 о, тем больше значение производной будет близко к нулю (с положительной стороны).

Чем угол ближе к 90 о, тем больше значение производной будет увеличиваться к +∞.

При угле наклона касательной от 90 о до 180 о

Чем он ближе к 90 о, тем больше значение производной будет уменьшаться к –∞.

Чем угол будет ближе к 180 о, тем больше значение производной будет близко к нулю (с отрицательной стороны).

317543. На рисунке изображен график функции y = f (x ) и отмечены точки –2, –1, 1, 2. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.


Имеем четыре точки: две из них принадлежат интервалам на которых функция убывает (это точки –1 и 1) и две интервалам на которых функция возрастает (это точки –2 и 2).

Можем сразу же сделать вывод о том, что в точках –1 и 1 производная имеет отрицательное значение, в точках –2 и 2 она имеет положительное значение. Следовательно в данном случае необходимо проанализировать точки –2 и 2 и определить в какой из них значении будет наибольшим. Построим касательные проходящие через указанные точки:


Значение тангенса угла между прямой a и осью абсцисс будет больше значения тангенса угла между прямой b и этой осью. Это означает, что значение производной в точке –2 будет наибольшим.

Ответим на следующий вопрос: в какой из точек –2, –1, 1 или 2 значение производной является наибольшим отрицательным? В ответе укажите эту точку.

Производная будет иметь отрицательное значение в точках, принадлежащим интервалам убывания, поэтому рассмотрим точки –2 и 1. Построим касательные проходящие через них:


Видим, что тупой угол между прямой b и осью оХ находится «ближе» к 180 о , поэтому его тангенс будет больше тангенса угла, образованного прямой а и осью оХ.

Таким образом, в точке х = 1, значение производной будет наибольшим отрицательным.

317544. На рисунке изображен график функции y = f (x ) и отмечены точки –2, –1, 1, 4. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.


Имеем четыре точки: две из них принадлежат интервалам, на которых функция убывает (это точки –1 и 4) и две интервалам, на которых функция возрастает (это точки –2 и 1).

Можем сразу же сделать вывод о том, что в точках –1 и 4 производная имеет отрицательное значение, в точках –2 и 1 она имеет положительное значение. Следовательно, в данном случае, необходимо проанализировать точки –1 и 4 и определить – в какой из них значении будет наименьшим. Построим касательные проходящие через указанные точки:


Значение тангенса угла между прямой a и осью абсцисс будет больше значения тангенса угла между прямой b и этой осью. Это означает, что значение производной в точке х = 4 будет наименьшим.

Ответ: 4

Надеюсь, что «не перегрузил» вас количеством написанного. На самом деле, всё очень просто, стоит только понять свойства производной, её геометрический смысл и как изменяется значение тангенса угла от 0 до 180 о.

1. Сначала определите знаки производной в данных точках (+ или -) и выберете необходимые точки (в зависимости от поставленного вопроса).

2. Постройте касательные в этих точках.

3. Пользуясь графиком тангесоиды, схематично отметьте углы и отобразите А лександр.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Процесс поиска наименьшего и наибольшего значения функции на отрезке напоминает увлекательный облёт объекта (графика функции) на вертолёте с обстрелом из дальнобойной пушки определённых точек и выбором из этих точек совсем особенных точек для контрольных выстрелов. Точки выбираются определённым образом и по определённым правилам. По каким правилам? Об этом мы далее и поговорим.

Если функция y = f (x ) непрерывна на отрезке [a , b ] , то она достигает на этом отрезке наименьшего и наибольшего значений . Это может произойти либо в точках экстремума , либо на концах отрезка. Поэтому для нахождения наименьшего и наибольшего значений функции , непрерывной на отрезке [a , b ] , нужно вычислить её значения во всех критических точках и на концах отрезка, а затем выбрать из них наименьшее и наибольшее.

Пусть, например, требуется определить наибольшее значение функции f (x ) на отрезке [a , b ] . Для этого следует найти все её критические точки, лежащие на [a , b ] .

Критической точкой называется точка, в которой функция определена , а её производная либо равна нулю, либо не существует. Затем следует вычислить значения функции в критических точках. И, наконец, следует сравнить между собой по величине значения функции в критических точках и на концах отрезка (f (a ) и f (b ) ). Наибольшее из этих чисел и будет наибольшим значением функции на отрезке [a , b ] .

Аналогично решаются и задачи на нахождение наименьших значений функции .

Ищем наименьшее и наибольшее значения функции вместе

Пример 1. Найти наименьшее и наибольшее значения функции на отрезке [-1, 2] .

Решение. Находим производную данной функции . Приравняем производную нулю () и получим две критические точки: и . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке достаточно вычислить её значения на концах отрезка и в точке , так как точка не принадлежит отрезку [-1, 2] . Эти значения функции - следующие: , , . Из этого следует, что наименьшее значение функции (на графике ниже обозначено красным), равное -7, достигается на правом конце отрезка - в точке , а наибольшее (тоже красное на графике), равно 9, - в критической точке .

Если функция непрерывна в некотором промежутке и этот промежуток не является отрезком (а является, например, интервалом; разница между интервалом и отрезком: граничные точки интервала не входят в интервал, а граничные точки отрезка входят в отрезок), то среди значений функции может и не быть наименьшего и наибольшего. Так, например, функция, изображённая на рисунке ниже, непрерывна на ]-∞, +∞[ и не имеет наибольшего значения.

Однако для любого промежутка (закрытого, открытого или бесконечного) справедливо следующее свойство непрерывных функций.

Пример 4. Найти наименьшее и наибольшее значения функции на отрезке [-1, 3] .

Решение. Находим производную данной функции как производную частного:

.

Приравниваем производную нулю, что даёт нам одну критическую точку: . Она принадлежит отрезку [-1, 3] . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Сравниваем эти значения. Вывод: , равного -5/13, в точке и наибольшего значения , равного 1, в точке .

Продолжаем искать наименьшее и наибольшее значения функции вместе

Есть преподаватели, которые по теме нахождения наименьшего и наибольшего значений функции не дают студентам для решения примеры сложнее только что рассмотренных, то есть таких, в которых функция - многочлен либо дробь, числитель и знаменатель которой - многочлены. Но мы не ограничимся такими примерами, поскольку среди преподавателей бывают любители заставить студентов думать по полной (таблице производных). Поэтому в ход пойдут логарифм и тригонометрическая функция.

Пример 6. Найти наименьшее и наибольшее значения функции на отрезке .

Решение. Находим производную данной функции как производную произведения :

Приравниваем производную нулю, что даёт одну критическую точку: . Она принадлежит отрезку . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Результат всех действий: функция достигает наименьшего значения , равного 0, в точке и в точке и наибольшего значения , равного e ² , в точке .

Пример 7. Найти наименьшее и наибольшее значения функции на отрезке .

Решение. Находим производную данной функции:

Приравниваем производную нулю:

Единственная критическая точку принадлежит отрезку . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Вывод: функция достигает наименьшего значения , равного , в точке и наибольшего значения , равного , в точке .

В прикладных экстремальных задачах нахождение наименьшего (наибольшего) значений функции, как правило, сводится к нахождению минимума (максимума). Но больший практический интерес имеют не сами минимумы или максимумы, а те значения аргумента, при которых они достигаются. При решении прикладных задач возникает дополнительная трудность - составление функций, описывающих рассматриваемое явление или процесс.

Пример 8. Резервуар ёмкостью 4 , имеющий форму параллелепипеда с квадратным основанием и открытый сверху, нужно вылудить оловом. Каковы должны быть размеры резервуара, чтобы на его покрытие ушло наименьшее количество материала?

Решение. Пусть x - сторона основания, h - высота резервуара, S - площадь его поверхности без крышки, V - его объём. Площадь поверхности резервуара выражается формулой , т.е. является функцией двух переменных . Чтобы выразить S как функцию одной переменной, воспользуемся тем, что , откуда . Подставив найденное выражение h в формулу для S :

Исследуем эту функцию на экстремум. Она определена и дифференцируема всюду в ]0, +∞[ , причём

.

Приравниваем производную нулю () и находим критическую точку . Кроме того, при производная не существует, но это значение не входит в область определения и поэтому не может быть точкой экстремума. Итак, - единственная критическая точка. Проверим её на наличие экстремума, используя второй достаточный признак. Найдём вторую производную . При вторая производная больше нуля (). Значит, при функция достигает минимума . Поскольку этот минимум - единственный экстремум данной функции, он и является её наименьшим значением . Итак, сторона основания резервуара должна быть равна 2 м, а его высота .

Пример 9. Из пункта A , находящегося на линии железной дороги, в пункт С , отстоящий от неё на расстоянии l , должны переправляться грузы. Стоимость провоза весовой единицы на единицу расстояния по железной дороге равна , а по шоссе она равна . К какой точке М линии железной дороги следует провести шоссе, чтобы транспортировка груза из А в С была наиболее экономичной (участок АВ железной дороги предполагается прямолинейным)?

Иногда в задачах B14 попадаются «плохие» функции, для которых сложно найти производную. Раньше такое было лишь на пробниках, но сейчас эти задачи настолько распространены, что уже не могут быть игнорированы при подготовке к настоящему ЕГЭ. В этом случае работают другие приемы, один из которых монотонность. Определение Функция f (x) называется монотонно возрастающей на отрезке , если для любых точек x 1 и x 2 этого отрезка выполняется следующее: x 1


Определение. Функция f (x) называется монотонно убывающей на отрезке , если для любых точек x 1 и x 2 этого отрезка выполняется следующее: x 1 f (x 2). Другими словами, для возрастающей функции чем больше x, тем больше f (x). Для убывающей функции все наоборот: чем больше x, тем меньше f (x).


Примеры. Логарифм монотонно возрастает, если основание a > 1, и монотонно убывает, если 0 0. f (x) = log a x (a > 0; a 1; x > 0) 1, и монотонно убывает, если 0 0. f (x) = log a x (a > 0; a 1; x > 0)"> 1, и монотонно убывает, если 0 0. f (x) = log a x (a > 0; a 1; x > 0)"> 1, и монотонно убывает, если 0 0. f (x) = log a x (a > 0; a 1; x > 0)" title="Примеры. Логарифм монотонно возрастает, если основание a > 1, и монотонно убывает, если 0 0. f (x) = log a x (a > 0; a 1; x > 0)"> title="Примеры. Логарифм монотонно возрастает, если основание a > 1, и монотонно убывает, если 0 0. f (x) = log a x (a > 0; a 1; x > 0)">




Примеры. Показательная функция ведет себя аналогично логарифму: растет при a > 1 и убывает при 0 0: 1 и убывает при 0 0:"> 1 и убывает при 0 0:"> 1 и убывает при 0 0:" title="Примеры. Показательная функция ведет себя аналогично логарифму: растет при a > 1 и убывает при 0 0:"> title="Примеры. Показательная функция ведет себя аналогично логарифму: растет при a > 1 и убывает при 0 0:">






0) или вниз (a 0) или вниз (a 9 Координаты вершины параболы Чаще всего аргумент функции заменяется на квадратный трехчлен вида Его график стандартная парабола, в которой нас интересуют ветви: Ветви параболы могут уходить вверх (при a > 0) или вниз (a 0) или наибольшее (a 0) или вниз (a 0) или вниз (a 0) или наибольшее (a 0) или вниз (a 0) или вниз (a title="Координаты вершины параболы Чаще всего аргумент функции заменяется на квадратный трехчлен вида Его график стандартная парабола, в которой нас интересуют ветви: Ветви параболы могут уходить вверх (при a > 0) или вниз (a






Отрезок в условии задачи отсутствует. Следовательно, вычислять f (a) и f (b) не требуется. Остается рассмотреть лишь точки экстремума; Но таких точек всего одна это вершина параболы x 0, координаты которой вычисляются буквально устно и без всяких производных.


Таким образом, решение задачи резко упрощается и сводится всего к двум шагам: Выписать уравнение параболы и найти ее вершину по формуле: Найти значение исходной функции в этой точке: f (x 0). Если никаких дополнительных условий нет, это и будет ответом.




0. Вершина параболы: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3" title="Найдите наименьшее значение функции: Решение: Под корнем стоит квадратичная функция График этой функции парабола ветвями вверх, поскольку коэффициент a = 1 > 0. Вершина параболы: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3" class="link_thumb"> 18 Найдите наименьшее значение функции: Решение: Под корнем стоит квадратичная функция График этой функции парабола ветвями вверх, поскольку коэффициент a = 1 > 0. Вершина параболы: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3 0. Вершина параболы: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3"> 0. Вершина параболы: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3"> 0. Вершина параболы: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3" title="Найдите наименьшее значение функции: Решение: Под корнем стоит квадратичная функция График этой функции парабола ветвями вверх, поскольку коэффициент a = 1 > 0. Вершина параболы: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3"> title="Найдите наименьшее значение функции: Решение: Под корнем стоит квадратичная функция График этой функции парабола ветвями вверх, поскольку коэффициент a = 1 > 0. Вершина параболы: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3">




Найдите наименьшее значение функции: Решение Под логарифмом снова квадратичная функция.График парабола ветвями вверх, т.к. a = 1 > 0. Вершина параболы: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1 0. Вершина параболы: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1"> 0. Вершина параболы: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1"> 0. Вершина параболы: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1" title="Найдите наименьшее значение функции: Решение Под логарифмом снова квадратичная функция.График парабола ветвями вверх, т.к. a = 1 > 0. Вершина параболы: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1"> title="Найдите наименьшее значение функции: Решение Под логарифмом снова квадратичная функция.График парабола ветвями вверх, т.к. a = 1 > 0. Вершина параболы: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1">


Найдите наибольшее значение функции: Решение: В показателе стоит квадратичная функция Перепишем ее в нормальном виде: Очевидно, что график этой функции парабола, ветви вниз (a = 1



Следствия из области определения функции Иногда для решения задачи B14 недостаточно просто найти вершину параболы. Искомое значение может лежать на конце отрезка, а вовсе не в точке экстремума. Если в задаче вообще не указан отрезок, смотрим на область допустимых значений исходной функции. А именно:


0 2. Арифметический квадратный корень существует только из неотрицательных чисел: 3.Знаменатель дроби не должен равняться нулю:" title="1. Аргумент логарифма должен быть положительным: y = log a f (x) f (x) > 0 2. Арифметический квадратный корень существует только из неотрицательных чисел: 3.Знаменатель дроби не должен равняться нулю:" class="link_thumb"> 26 1. Аргумент логарифма должен быть положительным: y = log a f (x) f (x) > 0 2. Арифметический квадратный корень существует только из неотрицательных чисел: 3.Знаменатель дроби не должен равняться нулю: 0 2. Арифметический квадратный корень существует только из неотрицательных чисел: 3.Знаменатель дроби не должен равняться нулю:"> 0 2. Арифметический квадратный корень существует только из неотрицательных чисел: 3.Знаменатель дроби не должен равняться нулю:"> 0 2. Арифметический квадратный корень существует только из неотрицательных чисел: 3.Знаменатель дроби не должен равняться нулю:" title="1. Аргумент логарифма должен быть положительным: y = log a f (x) f (x) > 0 2. Арифметический квадратный корень существует только из неотрицательных чисел: 3.Знаменатель дроби не должен равняться нулю:"> title="1. Аргумент логарифма должен быть положительным: y = log a f (x) f (x) > 0 2. Арифметический квадратный корень существует только из неотрицательных чисел: 3.Знаменатель дроби не должен равняться нулю:">


Решение Под корнем снова квадратичная функция. Ее график парабола, но ветви направлены вниз, поскольку a = 1 Теперь найдем вершину параболы: x 0 = b/(2a) = (2)/(2 · (1)) = 2/(2) = 1 Точка x 0 = 1 принадлежит отрезку ОДЗ и это хорошо. Теперь считаем значение функции в точке x 0, а также на концах ОДЗ: y(3) = y(1) = 0 Итак, получили числа 2 и 0. Нас просят найти наибольшее это число 2. Ответ: 2




Обратите внимание: неравенство строгое, поэтому концы не принадлежат ОДЗ. Этим логарифм отличается от корня, где концы отрезка нас вполне устраивают. Ищем вершину параболы: x 0 = b/(2a) = 6/(2 · (1)) = 6/(2) = 3 Вершина параболы подходит по ОДЗ: x 0 = 3 (1; 5). Но поскольку концы отрезка нас не интересуют, считаем значение функции только в точке x 0:


Y min = y(3) = log 0,5 (6 ·) = = log 0,5 (18 9 5) = log 0,5 4 = 2 Ответ: -2

Иногда в задачах B15 попадаются «плохие» функции, для которых сложно найти производную. Раньше такое было лишь на пробниках, но сейчас эти задачи настолько распространены, что уже не могут быть игнорированы при подготовке к настоящему ЕГЭ.

В этом случае работают другие приемы, один из которых - монотонность .

Функция f (x ) называется монотонно возрастающей на отрезке , если для любых точек x 1 и x 2 этого отрезка выполняется следующее:

x 1 < x 2 ⇒ f (x 1 ) < f (x 2 ).

Функция f (x ) называется монотонно убывающей на отрезке , если для любых точек x 1 и x 2 этого отрезка выполняется следующее:

x 1 < x 2 ⇒ f (x 1 ) > f (x 2 ).

Другими словами, для возрастающей функции чем больше x , тем больше f (x ). Для убывающей функции все наоборот: чем больше x , тем меньше f (x ).

Например, логарифм монотонно возрастает, если основание a > 1, и монотонно убывает, если 0 < a < 1. Не забывайте про область допустимых значений логарифма: x > 0.

f (x ) = log a x (a > 0; a ≠ 1; x > 0)

Арифметический квадратный (и не только квадратный) корень монотонно возрастает на всей области определения:

Показательная функция ведет себя аналогично логарифму: растет при a > 1 и убывает при 0 < a < 1. Но в отличие от логарифма, показательная функция определена для всех чисел, а не только для x > 0:

f (x ) = a x (a > 0)

Наконец, степени с отрицательным показателем. Можно записывать их как дробь. Имеют точку разрыва, в которой монотонность нарушается.

Все эти функции никогда не встречаются в чистом виде. В них добавляют многочлены, дроби и прочий бред, из-за которого становится тяжело считать производную. Что при этом происходит - сейчас разберем.

Координаты вершины параболы

Чаще всего аргумент функции заменяется на квадратный трехчлен вида y = ax 2 + bx + c . Его график - стандартная парабола, в которой нас интересуют:

  1. Ветви параболы - могут уходить вверх (при a > 0) или вниз (a < 0). Задают направление, в котором функция может принимать бесконечные значения;
  2. Вершина параболы - точка экстремума квадратичной функции, в которой эта функция принимает свое наименьшее (для a > 0) или наибольшее (a < 0) значение.

Наибольший интерес представляет именно вершина параболы , абсцисса которой рассчитывается по формуле:

Итак, мы нашли точку экстремума квадратичной функции. Но если исходная функция монотонна, для нее точка x 0 тоже будет точкой экстремума. Таким образом, сформулируем ключевое правило:

Точки экстремума квадратного трехчлена и сложной функции, в которую он входит, совпадают. Поэтому можно искать x 0 для квадратного трехчлена, а на функцию - забить.

Из приведенных рассуждений остается непонятным, какую именно точку мы получаем: максимума или минимума. Однако задачи специально составляются так, что это не имеет значения. Судите сами:

  1. Отрезок в условии задачи отсутствует. Следовательно, вычислять f (a ) и f (b ) не требуется. Остается рассмотреть лишь точки экстремума;
  2. Но таких точек всего одна - это вершина параболы x 0 , координаты которой вычисляются буквально устно и без всяких производных.

Таким образом, решение задачи резко упрощается и сводится всего к двум шагам:

  1. Выписать уравнение параболы y = ax 2 + bx + c и найти ее вершину по формуле: x 0 = −b /2a ;
  2. Найти значение исходной функции в этой точке: f (x 0). Если никаких дополнительных условий нет, это и будет ответом.

На первый взгляд, этот алгоритм и его обоснование могут показаться сложными. Я намеренно не выкладываю «голую» схему решения, поскольку бездумное применение таких правил чревато ошибками.

Рассмотрим настоящие задачи из пробного ЕГЭ по математике - именно там данный прием встречается чаще всего. Заодно убедимся, что таким образом многие задачи B15 становятся почти устными.

Под корнем стоит квадратичная функция y = x 2 + 6x + 13. График этой функции − парабола ветвями вверх, поскольку коэффициент a = 1 > 0.

Вершина параболы:

x 0 = −b /(2a ) = −6/(2 · 1) = −6/2 = −3

Поскольку ветви параболы направлены вверх, в точке x 0 = −3 функция y = x 2 + 6x + 13 принимает наименьшее значение.

Корень монотонно возрастает, значит x 0 - точка минимума всей функции. Имеем:

Задача. Найдите наименьшее значение функции:

y = log 2 (x 2 + 2x + 9)

Под логарифмом снова квадратичная функция: y = x 2 + 2x + 9. График - парабола ветвями вверх, т.к. a = 1 > 0.

Вершина параболы:

x 0 = −b /(2a ) = −2/(2 · 1) = −2/2 = −1

Итак, в точке x 0 = −1 квадратичная функция принимает наименьшее значение. Но функция y = log 2 x - монотонная, поэтому:

y min = y (−1) = log 2 ((−1) 2 + 2 · (−1) + 9) = ... = log 2 8 = 3

В показателе стоит квадратичная функция y = 1 − 4x − x 2 . Перепишем ее в нормальном виде: y = −x 2 − 4x + 1.

Очевидно, что график этой функции - парабола, ветви вниз (a = −1 < 0). Поэтому вершина будет точкой максимума:

x 0 = −b /(2a ) = −(−4)/(2 · (−1)) = 4/(−2) = −2

Исходная функция - показательная, она монотонна, поэтому наибольшее значение будет в найденной точке x 0 = −2:

Внимательный читатель наверняка заметит, что мы не выписывали область допустимых значений корня и логарифма. Но этого и не требовалось: внутри стоят функции, значения которых всегда положительны.

Следствия из области определения функции

Иногда для решения задачи B15 недостаточно просто найти вершину параболы. Искомое значение может лежать на конце отрезка , а вовсе не в точке экстремума. Если в задаче вообще не указан отрезок, смотрим на область допустимых значений исходной функции. А именно:

Обратите внимание еще раз: ноль вполне может быть под корнем, но в логарифме или знаменателе дроби - никогда. Посмотрим, как это работает на конкретных примерах:

Задача. Найдите наибольшее значение функции:

Под корнем снова квадратичная функция: y = 3 − 2x − x 2 . Ее график - парабола, но ветви вниз, поскольку a = −1 < 0. Значит, парабола уходит на минус бесконечность, что недопустимо, поскольку арифметический квадратный корень из отрицательного числа не существует.

Выписываем область допустимых значений (ОДЗ):

3 − 2x − x 2 ≥ 0 ⇒ x 2 + 2x − 3 ≤ 0 ⇒ (x + 3)(x − 1) ≤ 0 ⇒ x ∈ [−3; 1]

Теперь найдем вершину параболы:

x 0 = −b /(2a ) = −(−2)/(2 · (−1)) = 2/(−2) = −1

Точка x 0 = −1 принадлежит отрезку ОДЗ - и это хорошо. Теперь считаем значение функции в точке x 0 , а также на концах ОДЗ:

y (−3) = y (1) = 0

Итак, получили числа 2 и 0. Нас просят найти наибольшее - это число 2.

Задача. Найдите наименьшее значение функции:

y = log 0,5 (6x − x 2 − 5)

Внутри логарифма стоит квадратичная функция y = 6x − x 2 − 5. Это парабола ветвями вниз, но в логарифме не может быть отрицательных чисел, поэтому выписываем ОДЗ:

6x − x 2 − 5 > 0 ⇒ x 2 − 6x + 5 < 0 ⇒ (x − 1)(x − 5) < 0 ⇒ x ∈ (1; 5)

Обратите внимание: неравенство строгое, поэтому концы не принадлежат ОДЗ. Этим логарифм отличается от корня, где концы отрезка нас вполне устраивают.

Ищем вершину параболы:

x 0 = −b /(2a ) = −6/(2 · (−1)) = −6/(−2) = 3

Вершина параболы подходит по ОДЗ: x 0 = 3 ∈ (1; 5). Но поскольку концы отрезка нас не интересуют, считаем значение функции только в точке x 0:

y min = y (3) = log 0,5 (6 · 3 − 3 2 − 5) = log 0,5 (18 − 9 − 5) = log 0,5 4 = −2