Эмпирический уровень познания. Эмпирический и теоретический уровни научного знания

Познавательное отношение человека к миру осуществляется в различных формах - в форме обыденного познания, познания художественного, религиозного, наконец, в форме научного познания. Первые три области познания рассматриваются в отличие от науки как вненаучные формы. Научное познание выросло из познания обыденного, но в настоящее время эти две формы познания довольно далеко отстоят друг от друга.

В структуре научного познания выделяются два уровня - эмпирический и теоретический . Эти уровни не следует смешивать со сторонами познания вообще - чувственным отражением и рациональным познанием. Дело в том, что в первом случае имеются в виду различные типы познавательной деятельности ученых, а во втором - речь идет о типах психической деятельности индивида в процессе познания вообще, причем оба эти типа находят применение и на эмпирическом , и на теоретическом уровнях научного познания.

Сами уровни научного познания различаются по ряду параметров: 1) по предмету исследования . Эмпирическое исследование ориентировано на явления, теоретическое - на сущность; 2) по средствам и инструментам познания; 3) по методам исследования. На эмпирическом уровне это наблюдение, эксперимент, на теоретическом - системный подход, идеализация и т.д.; 4) по характеру добытых знаний. В одном случае это эмпирические факты, классификации, эмпирические законы, во втором - законы, раскрытие существенных связей, теории.

В XVII-XVIII и отчасти в XIX вв. наука еще находилась на эмпирической стадии, ограничивая свои задачи обобщением и классификацией эмпирических фактов , формулированием эмпирических законов. В дальнейшем над эмпирическим уровнем надстраивается теоретический, связанный со всесторонним исследованием действительности в ее существенных связях и закономерностях. При этом оба вида исследования органически взаимосвязаны и предполагают друг друга в целостной структуре научного познания.

Методы применимые на эмпирическом уровне научного познания: наблюдение и эксперимент .

Наблюдение - это преднамеренное и целенаправленное восприятие явлений и процессов без прямого вмешательства в их течение, подчиненное задачам научного исследования. Основные требования к научному наблюдению следующие: 1) однозначность цели, замысла; 2) системность в методах наблюдения; 3) объективность; 4) возможность контроля либо путем повторного наблюдения, либо с помощью эксперимента.

Наблюдение используется, как правило, там, где вмешательство в исследуемый процесс нежелательно либо невозможно. Наблюдение в современной науке связано с широким использованием приборов, которые, во-первых, усиливают органы чувств, а во-вторых, снимают налет субъективизма с оценки наблюдаемых явлений. Важное место в процессе наблюдения (как и эксперимента) занимает операция измерения. Измерение - есть определение отношения одной (измеряемой) величины к другой, принятой за эталон. Поскольку результаты наблюдения, как правило, приобретают вид различных знаков, графиков, кривых на осциллографе, кардиограмм и т.д., постольку важной составляющей исследования является интерпретация полученных данных.


Особой сложностью отличается наблюдение в социальных науках, где его результаты во многом зависят от личности наблюдателя и его отношения к изучаемым явлениям. В социологии и психологии различают простое и соучаствующее (включенное) наблюдение. Психологи наряду с этим используют и метод интроспекции (самонаблюдения).

Эксперимент в отличие от наблюдения - это метод познания, при котором явления изучаются в контролируемых и управляемых условиях. Эксперимент, как правило, осуществляется на основе теории или гипотезы, определяющих постановку задачи и интерпретацию результатов. Преимущества эксперимента в сравнении с наблюдением состоят в том, во-первых, что оказывается возможным изучать явление, так сказать, в "чистом виде", во-вторых, могут варьироваться условия протекания процесса, в-третьих, сам эксперимент может многократно повторяться.

Различают несколько видов эксперимента.

1) Простейший вид эксперимента - качественный, устанавливающий наличие или отсутствие предлагаемых теорией явлений.

2) Вторым, более сложным видом является измерительный или количественный эксперимент, устанавливающий численные параметры какого-либо свойства (или свойств) предмета, процесса.

3) Особой разновидностью эксперимента в фундаментальных науках является мысленный эксперимент.

4) Наконец: специфическим видом эксперимента является социальный эксперимент, осуществляемый в целях внедрения новых форм социальной организации и оптимизации управления. Сфера социального эксперимента ограничена моральными и правовыми нормами.

Наблюдение и эксперимент являются источником научных фактов , под которыми в науке понимаются особого рода предложения, фиксирующие эмпирическое знание. Факты - фундамент здания науки, они образуют эмпирическую основу науки, базу для выдвижения гипотез и создания теорий.

Обозначим некоторые методы обработки и систематизации знаний эмпирического уровня. Это прежде всего анализ и синтез. Анализ - процесс мысленного, а нередко и реального расчленения предмета, явления на части (признаки, свойства, отношения). Процедурой, обратной анализу, является синтез. Синтез - это соединение выделенных в ходе анализа сторон предмета в единое целое.

Значительная роль в обобщении результатов наблюдения и экспериментов принадлежит индукции (от лат. inductio - наведение), особому виду обобщения данных опыта. При индукции мысль исследователя движется от частного (частных факторов) к общему. Различают популярную и научную, полную и неполную индукцию. Противоположностью индукции является дедукция, движение мысли от общего к частному. В отличие от индукции, с которой дедукция тесно связана, она в основном используется на теоретическом уровне познания.

Процесс индукции связан с такой операцией, как сравнение - установление сходства и различия объектов, явлений. Индукция, сравнение, анализ и синтез подготавливают почву для выработки классификаций - объединения различных понятий и соответствующих им явлений в определенные группы, типы с целью установления связей между объектами и классами объектов. Примеры классификаций - таблица Менделеева, классификации животных, растений и т.д. Классификации представляются в виде схем, таблиц, используемых для ориентировки в многообразии понятий или соответствующих объектов.

Эмпирический уровень научного познания характеризуется непосредственным исследованием реально существующих, чувственно воспринимаемых объектов. На этом уровне осуществляется процесс накопления информации об исследуемых объектах (путем измерения, экспериментов) здесь происходит первичная систематизация полученных знаний (в виде таблиц, схем, графиков).

Эмпирическое познание, или чувственное, или живое созерцание - это сам процесс познания, включающий в себя три взаимосвязанные формы:

  • 1. ощущение - отражение в сознании человека отдельных сторон, свойств предметов, непосредственное воздействие их на органы чувств;
  • 2. восприятие - целостный образ предмета, непосредственно данный в живом созерцании совокупности всех своих сторон, синтез данных ощущений;
  • 3. представление - обобщенный чувственно-наглядный образ предмета, воздействовавшего на органы чувств в прошлом, но не воспринимаемого в данный момент.

Различают образы памяти и воображения. Образы предметов обычно нечеткие, расплывчатые, усредненные. Но зато в образах обычно выделены наиболее важные свойства предмета и отброшены несущественные.

Ощущения по органу чувств, через который они получены, делятся на зрительные (самые важные) слуховые, вкусовые и др. Обычно ощущения являются составной частью восприятия.

Как видим, познавательные способности человека связаны с органами чувств. Человеческий организм имеет экстерорецептивную систему, направленную на внешнюю среду (зрение, слух, вкус, обоняние и др.) и интерорецептивную систему, связанную с сигналами о внутреннем физиологическом состоянии организма.

Эмпирическое исследование базируется на непосредственном практическом взаимодействии исследователя с изучаемым объектом. Оно предполагает осуществление наблюдений и экспериментальную деятельность. Поэтому средства эмпирического исследования необходимо включают в себя приборы, приборные установки и другие средства реального наблюдения и эксперимента. Эмпирическое исследование в основе своей ориентировано на изучение явлений и зависимостей между ними. На этом уровне познания сущностные связи не выделяются еще в чистом виде, но они как бы высвечиваются в явлениях, проступают через их конкретную оболочку.

Эмпирические объекты - это абстракции, выделяющие в действительности некоторый набор свойств и отношений вещей. Эмпирические знания могут быть представлены гипотезами, обобщениями, эмпирическими законами, описательными теориями, но направлены они на объект, который дан наблюдателю непосредственно. Эмпирический уровень выражает объективные факты, выявленные в результате экспериментов и наблюдений, как правило, со стороны их внешних и очевидных связей. На этом уровне в качестве основных методов применяются реальный эксперимент и реальное наблюдение. Важную роль также играют методы эмпирического описания, ориентированные на максимально очищенную от субъективных наслоений объективную характеристику изучаемых явлений.1.Наблюдение.Наблюдение есть чувственное отражение предметов и явлений внешнего мира. Это - исходный метод эмпирического познания, позволяющий получить некоторую первичную информацию об объектах окружающей действительности.

Научное наблюдение (в отличие от обыденных, повседневных наблюдений) характеризуется рядом особенностей:- целенаправленностью (наблюдение должно вестись для решения поставленной задачи исследования, а внимание наблюдателя фиксироваться только на явлениях, связанных с этой задачей);- планомерностью (наблюдение должно проводиться строго по плану, составленному исходя из задачи исследования); - активностью (исследователь должен активно искать, выделять нужные ему моменты в наблюдаемом явлении, привлекая для этого свои знания и опыт, используя различные технические средства наблюдения). Научные наблюдения всегда сопровождаются описанием объекта познания. Последнее необходимо для фиксирования тех свойств, сторон изучаемого объекта, которые составляют предмет исследования. Описания результатов наблюдений образуют эмпирический базис науки, опираясь на который исследователи создают эмпирические обобщения, сравнивают изучаемые объекты по тем или иным параметрам, проводят классификацию их по каким-то свойствам, характеристикам, выясняют последовательность этапов их становления и развития. Почти каждая наука проходит указанную первоначальную, «описательную» стадию развития. При этом, как подчеркивается в одной из работ, касающихся этого вопроса, основные требования, которые предъявляются к научному описанию, направлены на то, чтобы оно было возможно более полным, точным и объективным. Описание должно давать достоверную и адекватную картину самого объекта, точно отображать изучаемые явления. Важно, чтобы понятия, используемые для описания, всегда имели четкий и однозначный смысл. При развитии науки, изменении ее основ преобразуются средства описания, часто создается новая система понятий. Наблюдение как метод познания более или менее удовлетворяло потребности наук, находившихся на описательно-эмпирической ступени развития. Дальнейший прогресс научного познания был связан с переходом многих наук к следующей, более высокой ступени развития, на которой наблюдения дополнялись экспериментальными исследованиями, предполагающими целенаправленное воздействие на изучаемые объекты. Что касается наблюдений, то в них отсутствует деятельность, направленная на преобразование, изменение объектов познания. Это обусловливается рядом обстоятельств: недоступностью этих объектов для практического воздействия (например, наблюдения удаленных космических объектов), нежелательностью, исходя из целей исследования, вмешательства в наблюдаемый процесс (фенологические, психологические и др. наблюдения), отсутствием технических, энергетических, финансовых и иных возможностей постановки экспериментальных исследований объектов познания.2.Эксперимент. Эксперимент - более сложный метод эмпирического познания по сравнению с наблюдением. Он предполагает активное, целенаправленное и строго контролируемое воздействие исследователя на изучаемый объект для выявления и изучения тех или иных его сторон, свойств, связей. При этом экспериментатор может преобразовывать исследуемый объект, создавать искусственные условия его изучения, вмешиваться в естественное течение процессов. Эксперимент включает в себя другие методы эмпирического исследования (наблюдение, измерение). В то же время он обладает рядом важных, присущих только ему особенностей. Во-первых, эксперимент позволяет изучать объект в «очищенном» виде, т. е. устранять всякого рода побочные факторы, наслоения, затрудняющие процесс исследования. Например, проведение некоторых экспериментов требует специально оборудованных помещений, защищенных (экранированных) от внешних электромагнитных воздействий на изучаемый объект.Во-вторых, в ходе эксперимента объект может быть поставлен в некоторые искусственные, в частности, экстремальные условия, т. е. изучаться при сверхнизких температурах, при чрезвычайно высоких давлениях или, наоборот, в вакууме, при огромных напряженностях электромагнитного поля и т. п. В таких искусственно созданных условиях удается обнаружить удивительные, порой неожиданные свойства объектов и тем самым глубже постигать их сущность. Очень интересными и многообещающими являются в этом плане космические эксперименты, позволяющие изучать объекты, явления в таких особых, необычных условиях (невесомость, глубокий вакуум), которые недостижимы в земных лабораториях. В-третьих, изучая какой-либо процесс, экспериментатор может вмешиваться в него, активно влиять на его протекание. Как отмечал академик И.П. Павлов, «опыт как бы берет явления в свои руки и пускает в ход то одно, то другое и таким образом в искусственных, упрощенных комбинациях определяет истинную связь между явлениями. Иначе говоря, наблюдение собирает то, что ему предлагает природа, опыт же берет у природы то, что хочет». В-четвертых, важным достоинством многих экспериментов является их воспроизводимость. Это означает, что условия эксперимента, а соответственно и проводимые при этом наблюдения, измерения могут быть повторены столько раз, сколько это необходимо для получения достоверных результатов.

Наука - двигатель прогресса. Без тех знаний, которые ежедневно передают нам ученые, человеческая цивилизация никогда бы не достигла хоть сколь-нибудь значимого уровня развития. Великие открытия, смелые гипотезы и предположения - все это продвигает нас вперед. Кстати, а каков механизм познания окружающего мира?

Общие сведения

В современной науке различают эмпирический и теоретический методы. Наиболее результативным следует признать первый из них. Дело в том, что эмпирический уровень научного познания предусматривает углубленное изучение непосредственно интересующего объекта, причем в этот процесс входит как само наблюдение, так и целый набор экспериментов. Как несложно понять, теоретический метод предусматривает познание объекта или явления посредством применения к нему обобщающих теорий и гипотез.

Нередко эмпирический уровень научного познания характеризуется множественными терминами, в которых фиксируются важнейшие характеристики исследуемого предмета. Нужно сказать, что данный уровень в науке особенно уважаем за то, что любое высказывание такого типа может быть проверено в ходе практического эксперимента. К примеру, к таким выражениям можно отнести данный тезис: "Насыщенный раствор поваренной соли можно изготовить, нагревая воду".

Таким образом, эмпирический уровень научного познания - это совокупность способов и методов изучения окружающего мира. Они (методы) основаны, прежде всего, на чувственном восприятии и точных данных измерительных приборов. Вот какие существуют уровни научного познания. Эмпирический, теоретический способы позволяют нам познавать различные явления, открывать новые горизонты науки. Так как они неразрывно связаны, было бы глупо рассуждать о каком-то из них, не рассказав про основные характеристики другого.

В настоящее время уровень эмпирического познания постоянно повышается. Проще говоря, ученые узнают и классифицируют все большие объемы информации, на основании которой и строятся новые научные теории. Конечно же, совершенствуются и способы, при помощи которых они получают данные.

Методы эмпирического познания

В принципе, о них можно догадаться самостоятельно, опираясь на сведения, которые уже были приведены в данной статье. Вот основные методы научного познания эмпирического уровня:

  1. Наблюдение. Этот способ известен всем без исключения. Он предполагает, что сторонний наблюдатель будет только беспристрастно фиксировать все происходящее (в естественных условиях), не вмешиваясь в сам процесс.
  2. Эксперимент. В чем-то схож с предыдущим методом, но в этом случае все происходящее помещено в жесткие лабораторные рамки. Как и в предыдущем случае, ученый часто является наблюдателем, который фиксирует результаты какого-то процесса или явления.
  3. Измерение. Этот способ предполагает необходимость эталона. С ним сравнивается явление или объект для выяснения расхождений.
  4. Сравнение. Схоже с предыдущим методом, но в данном случае исследователь просто сравнивает любые произвольные предметы (явления) между собой, не нуждаясь в эталонных мерах.

Вот мы вкратце и разобрали основные методы научного познания эмпирического уровня. А сейчас рассмотрим одни из них несколько более подробно.

Наблюдение

Нужно заметить, что оно бывает сразу нескольких видов, причем конкретный подбирает сам исследователь, ориентируясь на ситуацию. Давайте перечислим все разновидности наблюдения:

  1. Вооруженное и невооруженное. Если вы имеет хоть какое-то понятие о науке, то знаете, что «вооруженным» называют такое наблюдение, при котором используются различные приборы и приспособления, которые позволяют с большей точностью фиксировать получаемые результаты. Соответственно, «невооруженным» называют наблюдение, которое осуществляется без применения чего-то подобного.
  2. Лабораторное. Как видно из названия, осуществляется исключительно в искусственной, лабораторной среде.
  3. Полевое. В отличие от предыдущего, выполняется исключительно в естественных условиях, «в поле».

Вообще, наблюдение хорошо как раз тем, что во многих случаях позволяет получать совершенно уникальную информацию (особенно полевое). Нужно заметить, что данный метод широко распространен далеко не у всех ученых, так как для его успешного применения необходимы немалое терпение, усидчивость и способность беспристрастно фиксировать все наблюдаемые объекты.

Вот чем характеризуется основной метод, который использует эмпирический уровень научного познания. Это приводит нас к мысли о том, что данный способ - сугубо практический.

Всегда ли важна непогрешимость наблюдений?

Как ни странно, но в истории науки есть немало случаев, когда важнейшие открытия становились возможными благодаря грубым ошибкам и просчетам в процессе наблюдения. Так, в XVI веке знаменитый астроном Тихо де Браге делал работу своей жизни, пристально наблюдая за Марсом.

Именно на основе этих бесценных наблюдений его ученик, не менее знаменитый И. Кеплер, формирует гипотезу об эллипсовидной форме планетарных орбит. Но! Впоследствии оказалось, что наблюдения Браге отличались редкой неточностью. Многие предполагают, что он намеренно дал ученику неправильные сведения, но суть от этого не меняется: если бы Кеплер использовал точную информацию, он бы никогда не смог создать цельную (и правильную) гипотезу.

В этом случае благодаря неточности удалось упростить изучаемый предмет. Обойдясь без сложных многостраничных формул, Кеплер смог выяснить, что форма орбит не круглая, как тогда предполагалось, а эллипсовидная.

Основные отличия от теоретического уровня познания

Напротив, все выражения и термины, которыми оперирует теоретический уровень познания, проверить на практике нельзя. Вот вам пример: "Насыщенный раствор солей можно изготовить, нагревая воду". В этом случае пришлось бы провести невероятное количество экспериментов, так как "раствор солей" не указывает на конкретное химическое соединение. То есть "раствор поваренной соли" - понятие эмпирическое. Таким образом, все теоретические высказывания неверифицируемы. Согласно Попперу, они фальсифицируемы.

Проще говоря, эмпирический уровень научного познания (в отличие от теоретического) весьма конкретен. Результаты опытов можно потрогать, понюхать, подержать в руках или увидеть графики на дисплее измерительных приборов.

Кстати, а какие существуют формы эмпирического уровня научного познания? На сегодняшний день их две: факт и закон. Научный закон - высшая форма эмпирической формы познания, так как он выводит основные закономерности и правила, в соответствии с которыми происходит природное или техническое явление. Под фактом понимается лишь то, что оно проявляется при определенном сочетании нескольких условий, но ученые в этом случае еще не успели сформировать стройную концепцию.

Связь эмпирических и теоретических данных

Особенность научного познания во всех областях состоит в том, что теоретические и эмпирические данные характеризуются взаимным проникновением. Нужно заметить, что абсолютным образом разделить эти понятия совершенно невозможно, что бы ни утверждали некоторые исследователи. К примеру, мы говорили об изготовлении раствора солей. Если человек имеет представления о химии, этот пример будет для него эмпирическим (так как он и сам знает о свойствах основных соединений). Если же нет - высказывание будет носить теоретический характер.

Важность эксперимента

Нужно твердо усвоить, что эмпирический уровень научного познания ничего не стоит без экспериментальной основы. Именно эксперимент - основа и первоисточник всех знаний, которые на данный момент накоплены человечеством.

С другой стороны, теоретические изыскания без практической основы вообще превращаются в беспочвенные гипотезы, которые (за редкими исключениями) не имеют абсолютно никакой научной ценности. Таким образом, эмпирический уровень научного познания не может существовать без теоретического обоснования, но и оно без эксперимента ничтожно. Для чего мы все это говорим?

Дело в том, что рассмотрение способов познания в этой статье следует осуществлять, предполагая фактическое единство и взаимосвязь двух методов.

Характеристики эксперимента: что это такое

Как мы уже неоднократно говорили, особенности эмпирического уровня научного познания заключаются в том, что результаты опытов можно увидеть или ощутить. Но чтобы это произошло, необходимо произвести эксперимент, который является буквально «сердцевиной» всего научного познания с древнейших пор и по сей день.

Термин произошел от латинского слова «экспериментум», которое как раз-таки означает «опыт», «проба». В принципе, эксперимент - это и есть апробирование некоторых явлений в искусственных условиях. Нужно помнить, что во всех случаях эмпирический уровень научного познания характеризуется стремлением экспериментатора как можно меньше влиять на происходящее. Это нужно для получения действительно «чистых», адекватных данных, по которым можно с уверенностью говорить о характеристиках изучаемого предмета или явления.

Подготовительная работа, приборы и оборудование

Чаще всего перед постановкой эксперимента необходимо провести обстоятельную подготовительную работу, от качества которой будет зависеть и качество полученной в результате опыта информации. Давайте поговорим о том, как обычно осуществляется подготовка:

  1. Во-первых, разрабатывается программа, в соответствии с которой будет производиться научный опыт.
  2. В случае необходимости ученый самостоятельно изготавливает необходимую аппаратуру и оборудование.
  3. Еще раз повторяют все моменты теории, для подтверждения или опровержения которой и будет производиться эксперимент.

Таким образом, основная характеристика эмпирического уровня научного познания - наличие необходимого оборудования и приборов, без которых проведение эксперимента в большинстве случаев становится невозможным. И здесь мы говорим не о распространённой компьютерной технике, а о специализированных приборах-детекторах, которые измеряют весьма специфические условия окружающей среды.

Таким образом, экспериментатор всегда должен находиться во всеоружии. Речь тут не только о технической оснащенности, но и об уровне владения теоретическими сведениями. Не имея представления об изучаемом предмете, довольно сложно проводить какие-то научные эксперименты для его исследования. Нужно заметить, что в современных условиях многие эксперименты часто проводятся целой группой ученых, так как такой подход позволяет рационализировать усилия и распределить сферы ответственности.

Чем характеризуется изучаемый объект в экспериментальных условиях?

Изучаемое явление или предмет в эксперименте поставлены в такие условия, что они неизбежно будут воздействовать на органы чувств ученого и/или на регистрирующие приборы. Заметим, что реакция может зависеть как от самого экспериментатора, так и от характеристик используемого им оборудования. Кроме того, эксперимент далеко не всегда может дать все сведения об объекте, так как он проводится в условиях изоляции от окружающей среды.

Об этом очень важно помнить, рассматривая эмпирический уровень научного познания и его методы. Именно из-за последнего фактора так ценится наблюдение: в большинстве случаев только оно может дать реально полезные сведения о том, как тот или иной процесс происходит в естественных условиях природы. Такие данные зачастую невозможно получить даже в наиболее современной и отлично оборудованной лаборатории.

Впрочем, с последним утверждением все же можно поспорить. Современная наука сделала неплохой рывок вперед. Так, в Австралии изучают даже низовые лесные пожары, воссоздавая их протекание в особой камере. Такой подход позволяет не рисковать жизнями сотрудников, получая вполне приемлемые и качественные данные. К сожалению, это возможно далеко не всегда, потому как не все явления можно воссоздать (во всяком случае, пока что) в условиях научного учреждения.

Теория Нильса Бора

О том, что эксперименты в лабораторных условиях далеко не всегда точны, заявлял еще знаменитый физик Н. Бор. Но его робкие попытки намекнуть оппонентам о том, что средства и приборы в значительной степени влияют на адекватность получаемых данных, долгое время встречались коллегами крайне негативно. Они считали, что любое влияние прибора можно исключить, как-то изолировав его. Проблема состоит в том, что сделать это практически невозможно даже на современном уровне, не говоря уже о тех временах.

Конечно, современный эмпирический уровень научного познания (что это такое, мы уже говорили) высок, но фундаментальные законы физики нам обходить не суждено. Таким образом, задача исследователя состоит не только в банальном описании предмета или явления, но и в объяснении его поведения в различных условиях окружающей среды.

Моделирование

Ценнейшей возможностью изучить саму суть предмета является моделирование (в том числе компьютерное и/или математическое). Чаще всего экспериментируют в этом случае не над самим явлением или объектом, а над их максимально реалистичными и функциональными копиями, которые были созданы в искусственных, лабораторных условиях.

Если не очень понятно, поясним: исследовать торнадо гораздо безопаснее на примере его упрощенной модели в аэродинамической трубе. Затем полученные в ходе опыта данные сверяют с информацией о реальном смерче, после чего делаются соответствующие выводы.

28. Эмпирический и теоретический уровень научного познания. Их основные формы и методы

Научное познание имеет два уровня: эмпирический и теоретический.

- это непосредственное чувственное исследование реально существующих и доступных опыту объектов .

На эмпирическом уровне осуществляются следующие исследовательские процессы:

1. Формирование эмпирической базы исследования :

Накопление информации об исследуемых объектах и явлениях;

Определение сферы научных фактов в составе накопленной информации;

Введение физических величин, их измерение и систематизация научных фактов в виде таблиц, схем, графиков и т. п.;

2. Классификация и теоретическое обобщение сведений о полученных научных фактах:

Введение понятий и обозначений;

Выявление закономерностей в связях и отношениях объектов познания;

Выявление общих признаков у объектов познания и сведение их в общие классы по этим признакам;

Первичное формулирование исходных теоретических положений.

Таким образом, эмпирический уровень научного познания содержит в своем составе два компонента:

1. Чувственный опыт.

2. Первичное теоретическое осмысление чувственного опыта.

Основой содержания эмпирического научного познания , полученного в чувственном опыте, являются научные факты . Если любой факт, как таковой - это достоверное, единичное, самостоятельное событие или явление, то научный факт - это факт, твердо установленный, надежно подтвержденный и правильно описанный принятыми в науке способами.

Выявленный и зафиксированный принятыми в науке способами, научный факт, обладает принудительной силой для системы научного знания, то есть подчиняет себе логику достоверности исследования.

Таким образом, на эмпирическом уровне научного познания формируется эмпирическая база исследования, чья достоверность образуется принудительной силой научных фактов.

Эмпирический уровень научного познания использует следующие методы :

1. Наблюдение. Научное наблюдение - это система мероприятий по чувственному сбору сведений о свойствах исследуемого объекта познания. Основное методологическое условие правильного научного наблюдения - это независимость результатов наблюдения от условий и процесса наблюдения. Выполнение этого условия обеспечивает как объективность наблюдения, так и реализацию его основной функции - сбора эмпирических данных в их естественном, природном состоянии.

Наблюдения по способу проведения делятся на:

- непосредственные (сведения получаются непосредственно органами чувств);

- косвенные (органы чувств человека замещены техническими средствами).

2. Измерение . Научное наблюдение всегда сопровождается измерением. Измерение - это сравнение какой-либо физической величины объекта познания с эталонной единицей этой величины. Измерение является признаком научной деятельности, поскольку любое исследование становится научным только тогда, когда в нём происходят измерения.

В зависимости от характера поведения тех или иных свойств объекта во времени, измерения делятся на:

- статические , в которых определяют постоянные во времени величины (внешние размеры тел, вес, твердость, постоянное давление, удельная теплоемкость, плотность и т. п.);

- динамические , в которых находят меняющиеся во времени величины (амплитуды колебаний, перепады давлений, температурные изменения, изменения количества, насыщенности, скорость, показатели роста и т. д.).

По способу получения результатов измерения делятся на:

- прямые (непосредственное измерение величины измерительным прибором);

- косвенные (путем математического расчета величины из её известных соотношений с какой-либо величиной, получаемой путем прямых измерений).

Назначение измерения состоит в том, чтобы выразить свойства объекта в количественных характеристиках, перевести их в языковую форму и сделать основой математического, графического или логического описания.

3. Описание . Результаты измерения используются для научного описания объекта познания. Научное описание - это достоверная и точная картина объекта познания, отображенная средствами естественного или искусственного языка.

Назначение описания состоит в том, чтобы перевести чувственную информацию в удобную для рациональной обработки форму: в понятия, в знаки, в схемы, в рисунки, в графики, в цифры и т. д.

4. Эксперимент . Эксперимент - это исследовательское воздействие на объект познания для выявления новых параметров его известных свойств или для выявления его новых, ранее неизвестных свойств. Эксперимент отличается от наблюдения тем, что экспериментатор, в отличие от наблюдателя, вмешивается в естественное состояние объекта познания, активно воздействует и на него самого, и на процессы, в которых этот объект участвует.

По характеру поставленных целей эксперименты подразделяются на:

- исследовательские , которые направлены на обнаружение у объекта новых, неизвестных свойств;

- проверочные , которые служат для проверки или подтверждения тех или иных теоретических построений.

По методикам проведения и задачам на получение результата, эксперименты делятся на:

- качественные , которые носят поисковый характер, ставят задачу выявить само наличие или отсутствие тех или иных теоретически предполагаемых явлений, и не нацелены на получение количественных данных;

- количественные , которые направлены на получение точных количественных данных об объекте познания или о процессах, в которых он участвует.

После завершения эмпирического познания начинается теоретический уровень научного познания.

ТЕОРЕТИЧЕСКИЙ УРОВЕНЬ НАУЧНОГО ПОЗНАНИЯ - это обработка мышлением эмпирических данных с помощью абстрактной работы мысли.

Таким образом, теоретический уровень научного познания характеризуется преобладанием рационального момента - понятий, умозаключений, идей, теорий, законов, категорий, принципов, посылок, заключений, выводов, и т. д.

Преобладание рационального момента в теоретическом познании достигается абстрагированием - отвлечением сознания от чувственно воспринимаемых конкретных объектов и переходом к абстрактным представлениям .

Абстрактные представления подразделяются на :

1. Абстракции отождествления - группировка множества объектов познания в отдельные виды, роды, классы, отряды и т. д., по принципу тождества их каких-либо наиболее существенных признаков (минералы, млекопитающие, сложноцветные, хордовые, окислы, белковые, взрывчатые, жидкости, аморфные, субатомные и т. д.).

Абстракции отождествления позволяют открыть наиболее общие и существенные формы взаимодействий и связей между объектами познания, и переходить затем от них к частным проявлениям, видоизменениям и вариантам, раскрывая всю полноту процессов, происходящих между объектами материального мира.

Отвлекаясь от несущественных свойств объектов, абстракция отождествления позволяет перевести конкретные эмпирические данные в идеализированную и упрощенную для целей познания систему абстрактных объектов, способных участвовать в сложных операциях мышления.

2. Изолирующие абстракции . В отличие от абстракций отождествления, эти абстракции выделяют в отдельные группы не объекты познания, а их какие-либо общие свойства или признаки (твердость, электропроводность, растворимость, ударная вязкость, температура плавления, кипения, замерзания, гигроскопичность и т. д.).

Изолирующие абстракции также позволяют идеализировать в целях познания эмпирический опыт и выразить его в понятиях, способных участвовать в сложных операциях мышления.

Таким образом, переход к абстракциям позволяет теоретическому познанию предоставлять мышлению обобщенный абстрактный материал для получения научного знания обо всём многообразии реальных процессов и объектов материального мира, что невозможно было бы сделать, ограничиваясь только эмпирическим познанием, без отвлечения от конкретно каждого из этих неисчислимых объектов или процессов.

В результате абстрагирования становятся возможными следующие МЕТОДЫ ТЕОРЕТИЧЕСКОГО ПОЗНАНИЯ:

1. Идеализация . Идеализация - это мысленное создание неосуществимых в реальности объектов и явлений для упрощения процесса исследования и построения научных теорий.

Например: понятия точка или материальная точка, которые применяются для обозначения объектов, не имеющих размеров; введение различных условных понятий, таких, как: идеально ровная поверхность, идеальный газ, абсолютно черное тело, абсолютно твердое тело, абсолютная плотность, инерциальная система отсчета и т. д., для иллюстрации научных идей; орбита электрона в атоме, чистая формула химического вещества без примесей и другие невозможные в реальности понятия, создаваемые для объяснения или формулирования научных теорий.

Идеализации целесообразны:

Когда необходимо упростить исследуемый объект или явление для построения теории;

Когда необходимо исключить из рассмотрения те свойства и связи объекта, которые не влияют на суть планируемых результатов исследования;

Когда реальная сложность объекта исследования превышает существующие научные возможности его анализа;

Когда реальная сложность объектов исследования делает невыполнимым или затрудняет их научное описание;

Таким образом, в теоретическом познании всегда происходит замена реального явления или объекта действительности его упрощенной моделью.

То есть метод идеализации в научном познании неразрывно связан с методом моделирования.

2. Моделирование . Теоретическое моделирование - это замещение реального объекта его аналогом , выполненным средствами языка или мысленно.

Основное условие моделирования состоит в том, чтобы создаваемая модель объекта познания за счет высокой степени своего соответствия реальности, позволяла:

Проводить неосуществимые в реальных условиях исследования объекта;

Проводить исследования объектов, в принципе недоступных в реальном опыте;

Проводить исследования объекта, непосредственно недоступного в данный момент;

Удешевлять исследование, сокращать его по времени, упрощать его технологию и т. д.;

Оптимизировать процесс построения реального объекта за счет обкатки процесса построения модели-прообраза.

Таким образом, теоретическое моделирование выполняет в теоретическом познании две функции: исследует моделируемый объект и разрабатывает программу действий по его материальному воплощению (построению).

3. Мысленный эксперимент . Мысленный эксперимент - это мысленное проведение над объектом познания неосуществимых в реальности исследовательских процедур.

Используется в качестве теоретического полигона для планируемых реальных исследовательских действий, или для исследования явлений или ситуаций, в которых реальный эксперимент вообще невозможен (например, квантовая физика, теория относительности, социальные, военные или экономические модели развития и т. д.).

4. Формализация . Формализация - это логическая организация содержания научного знания средствами искусственного языка специальной символики (знаков, формул).

Формализация позволяет:

Вывести теоретическое содержание исследования на уровень общенаучных символов (знаков, формул);

Перенести теоретические рассуждения исследования в плоскость оперирования символами (знаками, формулами);

Создать обобщенную знаково-символьную модель логической структуры исследуемых явлений и процессов;

Производить формальное исследование объекта познания, то есть осуществлять исследование путем оперирования знаками (формулами) без непосредственного обращения к объекту познания.

5. Анализ и синтез . Анализ - это мысленное разложение целого на составные части, преследующее цели:

Исследование структуры объекта познания;

Расчленение сложного целого на простые части;

Отделение существенного от несущественного в составе целого;

Классификация объектов, процессов или явлений;

Выделение этапов какого-либо процесса и т. д.

Основное назначение анализа - изучение частей как элементов целого.

Части, познанные и осмысленные по-новому, складываются в целое с помощью синтеза - способа рассуждения, конструирующего новое знание о целом из объединения его частей.

Таким образом, анализ и синтез - это неразделимо связанные мыслительные операции в составе процесса познания.

6. Индукция и дедукция .

Индукция - это процесс познания, в котором знание отдельных фактов в совокупности наводит на знание общего.

Дедукция - это процесс познания, в котором каждое следующее утверждение логически проистекает из предыдущего.

Вышеперечисленные методы научного познания позволяют раскрыть наиболее глубокие и существенные связи, закономерности и характеристики объектов познания, на базе чего возникают ФОРМЫ НАУЧНОГО ПОЗНАНИЯ - способы совокупного представления результатов исследования.

Основными формами научного познания являются:

1. Проблема - теоретический или практический научный вопрос, требующий решения . Правильно сформулированная проблема частично содержит в себе решение, поскольку формулируется исходя из актуальной возможности своего решения.

2. Гипотеза - предполагаемый способ возможного решения проблемы. Гипотеза может выступать не только в виде предположений научного характера, но и в виде развернутых концепции или теории.

3. Теория - целостная система понятий, описывающая и объясняющая какую либо область действительности.

Научная теория является высшей формой научного познания , проходящей в своем становлении стадии постановки проблемы и выдвижения гипотезы, которая опровергается или подтверждается использованием методов научного познания.

Основные термины

АБСТРАГИРОВАНИЕ - отвлечение сознания от чувственно воспринимаемых конкретных объектов и переход к абстрактным представлениям.

АНАЛИЗ (общее понятие) - мысленное разложение целого на составные части.

ГИПОТЕЗА - предполагаемый способ возможного решения научной проблемы.

ДЕДУКЦИЯ - процесс познания, в котором каждое следующее утверждение логически проистекает из предыдущего.

ЗНАК - условное обозначение, служащее для записи величин, понятий, отношений и т. д. действительности.

ИДЕАЛИЗАЦИЯ - мысленное создание неосуществимых в реальности объектов и явлений для упрощения процесса их исследования и построения научных теорий.

ИЗМЕРЕНИЕ - сравнение какой-либо физической величины объекта познания с эталонной единицей этой величины.

ИНДУКЦИЯ - процесс познания, в котором знание отдельных фактов в совокупности наводит на знание общего.

МЫСЛЕННЫЙ ЭКСПЕРИМЕНТ - мысленное проведение над объектом познания неосуществимых в реальности исследовательских процедур.

НАБЛЮДЕНИЕ - система мероприятий по чувственному сбору сведений о свойствах исследуемого объекта или явления.

НАУЧНОЕ ОПИСАНИЕ - достоверная и точная картина объекта познания, отображенная средствами естественного или искусственного языка.

НАУЧНЫЙ ФАКТ - факт, твердо установленный, надежно подтвержденный и правильно описанный принятыми в науке способами.

ПАРАМЕТР - величина, характеризующая какое-либо свойство объекта.

ПРОБЛЕМА - теоретический или практический научный вопрос, требующий решения.

СВОЙСТВО - внешнее проявление того или иного качества объекта, отличающее его от других объектов, или, наоборот, роднящее с ними.

СИМВОЛ - то же самое, что и знак.

СИНТЕЗ (процесс мышления) - способ рассуждения, конструирующий новое знание о целом из объединения его частей.

ТЕОРЕТИЧЕСКИЙ УРОВЕНЬ НАУЧНОГО ПОЗНАНИЯ - обработка мышлением эмпирических данных с помощью абстрактной работы мысли.

ТЕОРЕТИЧЕСКОЕ МОДЕЛИРОВАНИЕ - замещение реального объекта его аналогом, выполненным средствами языка или мысленно.

ТЕОРИЯ - целостная система понятий, описывающая и объясняющая какую либо область действительности.

ФАКТ - достоверное, единичное, самостоятельное событие или явление.

ФОРМА НАУЧНОГО ПОЗНАНИЯ - способ совокупного представления результатов научного исследования.

ФОРМАЛИЗАЦИЯ - логическая организация научного знания средствами искусственного языка или специальной символики (знаков, формул).

ЭКСПЕРИМЕНТ - исследовательское воздействие на объект познания для изучения ранее известных или для выявления новых, ранее неизвестных свойств.

ЭМПИРИЧЕСКИЙ УРОВЕНЬ НАУЧНОГО ПОЗНАНИЯ - непосредственное чувственное исследование реально существующих и доступных опыту объектов.

ЭМПИРИЯ - область отношений человека с действительностью, определяемая чувственным опытом.

Из книги Философия науки и техники автора Стёпин Вячеслав Семенович

Глава 8. Эмпирический и теоретический уровни научного исследования Научные знания представляют собой сложную развивающуюся систему, в которой по мере эволюции возникают все новые уровни организации. Они оказывают обратное воздействие на ранее сложившиеся уровни

Из книги Философия для аспирантов автора Кальной Игорь Иванович

5. ОСНОВНЫЕ МЕТОДЫ ПОЗНАНИЯ БЫТИЯ Проблема метода познания актуальна, ибо она не только определяет, но в некоторой мере и предопределяет путь познания. Путь познания имеет свою собственную эволюцию от «способа отражения» через «способ познания» к «научному методу». Эта

Из книги Философия: Учебник для вузов автора Миронов Владимир Васильевич

XII. ПОЗНАВАЕМОСТЬ МИРА. УРОВНИ, ФОРМЫ И МЕТОДЫ ПОЗНАНИЯ. ПОЗНАНИЕ МИРА КАК ОБЪЕКТ ФИЛОСОФСКОГО АНАЛИЗА 1. Два подхода к вопросу о познаваемости мира.2. Гносеологическое отношение в системе «субъект-объект», его основания.3. Активная роль субъекта познания.4. Логические и

Из книги Очерки организованной науки [Дореформенная орфография] автора

4. Логика, методология и методы научного познания Сознательная целенаправленная деятельность по формированию и развитию знания регулируется нормами и правилами, руководствуется определенными методами и приемами. Выявление и разработка таких норм, правил, методов и

Из книги Социология [Краткий курс] автора Исаев Борис Акимович

Основные понятия и методы.

Из книги Введение в философию автора Фролов Иван

12.2. Основные методы социологических исследований Социологи имеют в своем арсенале и используют все разнообразие методов научных исследований. Рассмотрим основные из них:1. Метод наблюдения.Наблюдение - это прямая регистрация фактов очевидцем. В отличие от обыденного

Из книги Социальная философия автора Крапивенский Соломон Элиазарович

5. Логика, методология и методы научного познания Сознательная целенаправленная деятельность по формированию и развитию знания регулируется нормами и правилами, руководствуется определенными методами и приемами. Выявление и разработка таких норм, правил, методов и

Из книги Шпаргалки по философии автора Нюхтилин Виктор

1. Эмпирический уровень социального познания Наблюдение в обществознании Огромные успехи теоретического знания, восхождение ко все более высоким уровням абстракции нисколько не умалили значимость и необходимость исходного эмпирического знания. Так обстоит дело и в

Из книги Вопросы социализма (сборник) автора Богданов Александр Александрович

2. Теоретический уровень социального познания Исторический и логический методы По большому счету эмпирический уровень научного познания сам по себе не достаточен для проникновения в сущность вещей, в том числе в закономерности функционирования и развития общества. На

Из книги Теория познания автора Этэрнус

26. Сущность познавательного процесса. Субъект и объект познания. Чувственный опыт и рациональное мышление: их основные формы и характер соотнесенности Познание - это процесс получения знания и формирования теоретического объяснения действительности.В познавательном

Из книги Очерки организационной науки автора Богданов Александр Александрович

Методы труда и методы познания Одна из основных задач нашей новой культуры - восстановить по всей линии связь труда и науки, связь, разорванную веками предшествующего развития.Решение задачи лежит в новом понимании науки, в новой точке зрения на нее:наука есть

Из книги Философия: конспект лекций автора Шевчук Денис Александрович

Обычные методы познания Обычными методами - будем считать методы, входящие в состав науки и философии (эксперимент, размышление, дедукция, и т.п.). Эти методы, в объективно- или субъективно-виртуальном Мире - хоть и стоят на ступеньку ниже специфических методов, но тоже

Из книги Логика для юристов: Учебник. автора Ивлев Юрий Васильевич

Основные понятия и методы

Из книги Логика: Учебник для студентов юридических вузов и факультетов автора Иванов Евгений Акимович

3. Средства и методы познания Разные науки, вполне понятно, обладают своими специфическими методами и средствами исследования. Философия, не отбрасывая такую специфику, тем не менее сосредоточивает свои усилия на анализе тех способов познания, которые являются общими

Из книги автора

§ 5. ИНДУКЦИЯ И ДЕДУКЦИЯ КАК МЕТОДЫ ПОЗНАНИЯ Вопрос об использовании индукции и дедукции в качестве методов познания обсуждался на протяжении всей истории философии. Под индукцией чаще всего понималось движение познания от фактов к утверждениям общего характера, а под

Из книги автора

Глава II. Формы развития научного знания Становление и развитие теории - сложнейший и длительный диалектический процесс, имеющий свое содержание и свои специфические формы.Содержание этого процесса составляет переход от незнания к знанию, от неполного и неточного

В науке различают эмпирический и теоретический уровни исследования. Эмпирическое исследование направлено непосредственно на изучаемый объект и реализуется посредством наблюдения и эксперимента. Теоретическое исследование концентрируется вокруг обобщающих идей, гипотез, законов, принципов. Данные как эмпирического, так и теоретического исследования фиксируются в виде высказываний, содержащих эмпирические и теоретические термины. Эмпирические термины входят в высказывания, истинность которых может быть проверена в эксперименте. Таково, например, высказывание: "Сопротивление данного проводника при нагревании от 5 до 10 °C увеличивается". Истинность высказываний, содержащих теоретические термины, невозможно установить экспериментально. Чтобы подтвердить истинность высказывания "Сопротивление проводников при нагревании от 5 до 10 °C увеличивается", следовало бы провести бесконечное число экспериментов, что невозможно в принципе. "Сопротивление данного проводника" - эмпирический термин, термин наблюдения. "Сопротивление проводников" - теоретический термин, понятие, полученное в результате обобщения. Высказывания с теоретическими понятиями неверифицируемы, но они, по Попперу, фальсифицируемы.

Важнейшей особенностью научного исследования является взаимонагруженность эмпирических и теоретических данных. В принципе невозможно абсолютным образом разделить эмпирические и теоретические факты. В приведенном выше высказывании с эмпирическим термином использовались понятия температуры и числа, а они являются теоретическими понятиями. Измеряющий сопротивление проводников понимает происходящее, потому что он обладает теоретическими знаниями. С другой стороны, теоретические знания без экспериментальных данных не имеют научной силы, превращаются в беспочвенные умозрения. Согласованность, взаимонагруженность эмпирического и теоретического - важнейшая черта науки. Если указанное гармоническое согласие нарушается, то с целью его восстановления начинается поиск новых теоретических концепций. Разумеется, при этом уточняют и экспериментальные данные. Рассмотрим в свете единства эмпирического и теоретического основные способы эмпирического исследования.

Эксперимент - сердцевина эмпирического исследования. Латинское слово "экспериментум" буквально означает пробу, опыт. Эксперимент и есть апробирование, испытание изучаемых явлений в контролируемых и управляемых условиях. Экспериментатор стремится выделить изучаемое явление в чистом виде, с тем чтобы было как можно меньше препятствий в получении искомой информации. Постановке эксперимента предшествует соответствующая подготовительная работа. Разрабатывается программа эксперимента; если нужно, то изготавливаются специальные приборы, измерительная аппаратура; уточняется теория, которая выступает в качестве необходимого инструментария эксперимента.



Составляющими эксперимента являются: экспериментатор; изучаемое явление; приборы. В случае приборов речь идет не о технических устройствах типа компьютеров, микро- и телескопов, призванных усилить чувственные и рациональные возможности человека, а о приборах-детекторах, приборах-посредниках, фиксирующих данные эксперимента, испытывающих непосредственное влияние изучаемых явлений. Как видим, экспериментатор находится "во всеоружии", на его стороне, кроме всего прочего, профессиональный опыт и, что особенно важно, владение теорией. В современных условиях эксперимент чаще всего проводится группой исследователей, которые действуют согласованно, соизмеряя свои усилия и способности.

Изучаемое явление поставлено в эксперименте в условия, когда оно реагирует на приборы-детекторы (если специальный прибор-детектор отсутствует, то в качестве такового выступают органы чувств самого экспериментатора: его глаза, уши, пальцы). Эта реакция зависит от состояния и характеристик прибора. В силу этого обстоятельства экспериментатор не может получить сведения об изучаемом явлении как таковом, т. е. в изоляции от всех других процессов и объектов. Таким образом, средства наблюдения участвуют в формировании экспериментальных данных. В физике этот феномен вплоть до экспериментов в области квантовой физики оставался неизвестным, и его обнаружение в 20-х - 30-х годах XX в. было сенсацией. Длительное время разъяснение Н. Бора о том, что средства наблюдения влияют на результаты эксперимента , принималось в штыки. Оппоненты Бора считали, что эксперимент можно очистить от возмущающего влияния прибора, но это оказалось невозможным. Задача исследователя состоит не в том, чтобы представить объект как таковой, а в том, чтобы объяснить его поведение во всевозможных ситуациях.

Следует отметить, что в социальных экспериментах ситуация также не является простой, ибо испытуемые реагируют на чувства, мысли, духовный мир исследователя. Обобщая экспериментальные данные, исследователь должен не абстрагироваться от своего влияния, а именно с учетом его суметь выявить общее, сущностное.

Данные эксперимента так или иначе должны быть доведены до известных рецепторов человека, например, это происходит тогда, когда экспериментатор считывает показания измерительных приборов. Экспериментатор имеет возможность и вместе с тем вынужден задействовать присущие ему (все или некоторые) формы чувственного познания. Однако чувственное познание - это всего лишь один из моментов сложного познавательного процесса, который осуществляет экспериментатор. Эмпирическое познание неправомерно сводить к чувственному познанию.

Среди методов эмпирического познания часто называют наблюдение , которое порой даже противопоставляется методу экспериментирования. Имеется в виду не наблюдение как этап любого эксперимента, а наблюдение как особый, целостный способ изучения явлений, наблюдение астрономических, биологических, социальных и других процессов. Различие между экспериментированием и наблюдением в основном сводится к одному пункту: в эксперименте его условиями управляют, а в наблюдении процессы предоставлены естественному ходу событий. С теоретических позиций структура эксперимента и наблюдения одна и та же: изучаемое явление - прибор - экспериментатор (или наблюдатель). Поэтому осмысление наблюдения мало чем отличается от осмысления эксперимента. Наблюдение вполне можно считать своеобразным случаем эксперимента.

Интересной возможностью развития метода экспериментирования является так называемое модельное экспериментирование . Иногда экспериментируют не над оригиналом, а над его моделью, т. е. над другой сущностью, похожей на оригинал. Модель может иметь физическую, математическую или какую-то иную природу. Важно, чтобы манипуляции с нею давали возможность транслировать получаемые сведения на оригинал. Это возможно не всегда, а лишь тогда, когда свойства модели релевантны, т. е. действительно соответствуют свойствам оригинала. Полное совпадение свойств модели и оригинала никогда не достигается, причем по очень простой причине: модель не есть оригинал. Как шутили А. Розенблют и Н. Винер, лучшей материальной моделью кошки будет иная кошка, однако предпочтительнее, чтобы это была именно та же самая кошка. Один из смыслов шутки таков: на модели невозможно получить столь же исчерпывающие знания, как в процессе экспериментирования с оригиналом. Но иногда можно довольствоваться и частичным успехом, особенно если изучаемый объект недоступен немодельному эксперименту. Гидростроители, прежде чем возвести плотину через бурную реку, проведут модельный эксперимент в стенах родного института. Что касается математического моделирования, то оно позволяет относительно быстро "проиграть" различные варианты развития изучаемых процессов. Математическое моделирование - метод, находящийся на стыке эмпирического и теоретического. То же самое относится и к так называемым мысленным экспериментам, когда рассматриваются возможные ситуации и их последствия.

Важнейшим моментом эксперимента являются измерения, они позволяют получать количественные данные. При измерении сопоставляются качественно одинаковые характеристики. Здесь мы сталкиваемся с вполне типичной для научных исследований ситуацией. Сам процесс измерения, несомненно, является экспериментальной операцией. Но вот установление качественной одинаковости сопоставляемых в процессе измерения характеристик относится уже к теоретическому уровню познания. Чтобы выбрать эталон единицы величины, необходимо знать, какие явления эквивалентны друг другу; при этом предпочтение будет отдано тому эталону, который применим к максимально большому числу процессов. Длину измеряли локтями, ступнями, шагами, деревянным метром, платиновым метром, а теперь ориентируются на длины электромагнитных волн в вакууме. Время измеряли по движению звезд, Земли, Луны, пульсом, маятниками. Теперь время измеряют в соответствии с принятым эталоном секунды. Одна секунда равна 9 192 631 770 периодам излучения соответствующего перехода между двумя определенными уровнями сверхтонкой структуры основного состояния атома цезия. Как в случае с измерением длин, так и в случае измерения физического времени эталонами измерения избрали электромагнитные колебания. Такой выбор объясняется содержанием теории, а именно квантовой электродинамики. Как видим, измерение теоретически нагружено. Измерение может быть эффективно осуществлено лишь после выявления смысла того, что измеряется и каким образом. Чтобы лучше разъяснить сущность процесса измерения, рассмотрим ситуацию с оценкой знания студентов, допустим, по десятибалльной шкале.

Преподаватель беседует со многими студентами и ставит им оценки - 5 баллов, 7 баллов, 10 баллов. Студенты отвечают на разные вопросы, но преподаватель подводит все ответы "под общий знаменатель". Если сдавший экзамен информирует кого-то о своей оценке, то из этой краткой информации невозможно установить, что было предметом беседы преподавателя и студента. Не интересуются экзаменационной конкретикой и стипендиальные комиссии. Измерение, а оценка знаний студентов есть частный случай этого процесса, фиксирует количественные градации не иначе как в рамках данного качества. Различные ответы студентов преподаватель "подводит" под одно и то же качество, а уже затем устанавливает различие. 5 и 7 баллов в качестве баллов равнозначны, в первом случае этих баллов просто меньше, чем во втором. Преподаватель, оценивая знания студентов, исходит из своих представлений о существе данной учебной дисциплины. Студент тоже умеет обобщать, он мысленно подсчитывает свои неудачи и успехи. В итоге, однако, преподаватель и студент могут прийти к различным выводам. Почему? Прежде всего в силу того, что студент и преподаватель неодинаково понимают вопрос оценки знаний, они оба обобщают, но одному из них эта умственная операция удается лучше. Измерение, как уже отмечалось, теоретически нагружено.

Обобщим изложенное выше. Измерение А и В предполагает: а) установление качественной тождественности А и В; б) введение единицы величины (секунда, метр, килограмм, балл); в) взаимодействие А и В с прибором, который обладает той же качественной характеристикой, что А и В; г) считывание показаний прибора. Приведенные правила измерения используются при изучении физических, биологических и социальных процессов. В случае физических процессов измерительный прибор часто является вполне определенным техническим устройством. Таковы термометры, вольтметры, кварцевые часы. В случае биологических и социальных процессов дело обстоит сложнее - в соответствии с их системно-символической природой. Ее надфизический смысл означает, что и прибор должен обладать этим смыслом. Но технические устройства обладают лишь физической, а не системно-символической природой. Раз так, то они не годятся для непосредственного измерения биологических и социальных характеристик. Но последние поддаются измерению, и их действительно измеряют. Наряду с уже приведенными примерами весьма показателен в этой связи товарно-денежный рыночный механизм, посредством которого измеряют стоимость товаров. Нет такого технического устройства, которое бы не измеряло стоимость товаров непосредственно, но опосредованным путем, с учетом всей деятельности покупателей и продавцов, это удается сделать.

После анализа эмпирического уровня исследований нам предстоит рассмотреть органично связанный с ним теоретический уровень исследования.