Progression formulas. Arithmetic progression

NUMERIC SEQUENCES

ARITHMETICAL AND GEOMETRIC PROGRESSIONS

If for every natural number n number matched Xn, then they say that it is given number sequence X 1, X 2, …, Xn, ….

Number sequence notation {X n } .

At the same time, the numbers X 1, X 2, …, Xn, ... are called members of the sequence .

Basic methods of specifying number sequences

1. One of the most convenient ways is to set a sequence the formula of its common term : Xn = f(n), n Î N.

For example, Xn = n 2 + 2n+ 3 Þ X 1 = 6, X 2 = 11, X 3 = 18, X 4 = 27, …

2. Direct transfer finite number of first members.

For example, https://pandia.ru/text/80/155/images/image002_9.gif" width="87" height="46 src=">

3. Recurrence relation , i.e., a formula expressing the n-term through the preceding one or more terms.

For example, near Fibonacci called a sequence of numbers

1, 1, 2, 3, 5, 8, 13, 21, …, which is determined recurrently:

X 1 = 1, X 2 = 1, Xn+1 = xn + xn–1 (n = 2, 3, 4, …).

Arithmetic operations on sequences

1. The sum (difference) sequences ( An) And ( bn cn } = { an ± bn}.

2. The work sequences ( An) And ( bn) is called the sequence ( cn } = { an× bn}.

3. Private sequences ( An) And ( bn }, bn¹ 0, called the sequence ( cn } = { an×/ bn}.

Properties of number sequences

1. Sequence ( Xn) is called bounded above M n inequality is true Xn £ M.

2. Sequence ( Xn) is called bounded below, if such a real number exists m, which for all natural values n inequality is true Xn ³ m.

3. Sequence ( Xn) is called increasing n inequality is true Xn < Xn+1.

4. Sequence ( Xn) is called decreasing, if for all natural values n inequality is true Xn > Xn+1.

5. Sequence ( Xn) is called non-increasing, if for all natural values n inequality is true Xn ³ Xn+1.

6. Sequence ( Xn) is called non-decreasing, if for all natural values n inequality is true Xn £ Xn+1.

Sequences increasing, decreasing, non-increasing, non-decreasing are called monotonous sequences, with increasing and decreasing - strictly monotonous.

Basic techniques used when examining a sequence for monotonicity

1. Using the definition.

a) For the sequence under study ( Xn) the difference is made

XnXn+1, and then we find out whether this difference retains a constant sign for any n Î N, and if so, which one exactly. Depending on this, a conclusion is made about the monotonicity (non-monotonicity) of the sequence.

b) For sequences of constant sign ( Xn) one can form a relation Xn+1/Xn and compare it with one.

If this attitude is in front of everyone n is greater than one, then for a strictly positive sequence the conclusion is made that it is increasing, and for a strictly negative sequence, accordingly, it is decreasing.

If this attitude is in front of everyone n is not less than one, then for a strictly positive sequence the conclusion is made that it is non-decreasing, and for a strictly negative sequence, accordingly, it is non-increasing.

If this is the relation at some numbers n greater than one, and for other numbers n less than one, this indicates the non-monotonic nature of the sequence.

2. Go to the real argument function.

Let it be necessary to examine a number sequence for monotonicity

An = f(n), n Î N.

Let us introduce the real argument function X:

f(X) = A(X), X³ 1,

and examine it for monotony.

If the function is differentiable on the interval under consideration, then we find its derivative and examine the sign.

If the derivative is positive, then the function increases.

If the derivative is negative, then the function decreases.

Returning to the natural values ​​of the argument, we extend these results to the original sequence.

Number A called limit of the sequence Xn, if for any arbitrarily small positive number e there is such a natural number N, which is for all numbers n > N inequality satisfied | xna | < e.

Calculating the amount n first terms of the sequence

1. Presentation of the general term of the sequence in the form of the difference of two or more expressions in such a way that, upon substitution, most of the intermediate terms are reduced and the sum is significantly simplified.

2. To check and prove existing formulas for finding the sums of the first terms of sequences, the method of mathematical induction can be used.

3. Some problems with sequences can be reduced to problems involving arithmetic or geometric progressions.

Arithmetic and geometric progressions

Arithmetic progression

Geometric progression

Definition

Xn }, nÎ N, is called an arithmetic progression if each of its terms, starting from the second, is equal to the previous one, added to the same number constant for a given sequence d, i.e.

An+1 = an + d,

Where d– progression difference,

An– common member ( n th member)

Definition

Number sequence ( Xn }, nÎ N, is called a geometric progression if each of its terms, starting from the second, is equal to the previous one, multiplied by the same number constant for a given sequence q, i.e.

bn+1 = bn × q, b 1¹0, q ¹ 0,

Where q– denominator of progression,

bn– common member ( n th member)

Monotone

If d> 0, then the progression is increasing.

If d < 0, то прогрессия убывающая.

Monotone

If b 1 > 0, q> 1 or b 1 < 0, 0 < q < 1, то прогрессия возрастающая.

If b 1 < 0, q> 1 or b 1 > 0, 0 < q < 1, то прогрессия убывающая.

If q < 0, то прогрессия немонотонная

Common term formula

An = a 1 + d×( n – 1)

If 1 £ k £ n– 1, then An = ak + d×( nk)

Common term formula

bn = bqn – 1

If 1 £ k £ n– 1, then bn = bk × qnk

Characteristic property

If 1 £ k £ n– 1, then

Characteristic property

If 1 £ k £ n– 1, then

Property

an + am = ak + al, If n + m = k + l

Property

bn × bm = bk × bl, If n + m = k + l

Sum of first n members

Sn = a 1 + a 2 + … + an

or

Sum

Sn = b 1 + b 2 + … + bn

If q No. 1, then .

If q= 1, then Sn = bn.

If | q| < 1 и n® ¥, then

Operations on progressions

1. If ( An) And ( bn) arithmetic progressions, then the sequence

{ an ± bn) is also an arithmetic progression.

2. If all terms of an arithmetic progression ( An) multiply by the same real number k, then the resulting sequence will also be an arithmetic progression, the difference of which will accordingly change in k once

Operations on progressions

If ( An) And ( bn) geometric progressions with denominators q 1 and q 2 accordingly, then the sequence:

1) {an× bn qq 2;

2) {an/bn) is also a geometric progression with the denominator q 1/q 2;

3) {|an|) is also a geometric progression with the denominator | q 1|

Basic methods for solving progression problems

1. One of the most common solution methods problems on arithmetic progressions is that all terms of the progression involved in the problem condition are expressed through the difference of the progression d a d And A 1.

2. Widespread and considered a standard solution method geometric progression problems , when all members of the geometric progression appearing in the problem statement are expressed through the denominator of the progression q and any one of its members, most often the first b 1. Based on the conditions of the problem, a system with unknowns is compiled and solved q And b 1.

Examples of problem solving

Problem 1 .

Sequence given Xn = 4n(n 2 + 1) – (6n 2 + 1). Find the amount Sn first n members of this sequence.

Solution. Let's transform the expression for the general member of the sequence:

Xn = 4n(n 2 + 1) – (6n 2 + 1) = 4n 3 + 4n – 6n 2 – 1 = n 4 – n 4 + 4n 3 – 6n 2 + 4n – 1 =

= n 4 – (n 4 – 4n 3 + 6n 2 – 4n+ 1) = n 4 – (n – 1)4.

Sn = x 1 + x 2 + x 3 + … + xn = (14 – 04) + (24 – 14) + (34 – 24) + … + (n 4 – (n – 1)4) = n 4.

Problem 2 .

Sequence given An = 3n+ 2..gif" width="429" height="45">.

From here, A(3n + 5) +B(3n + 2) = 1,

(3A + 3B)n + (5A + 2B) = 1.

n.

n 1 | 3A + 3B = 0,

n0 | 5 A + 2B = 1.

A = 1/3, IN = –1/3.

Thus, https://pandia.ru/text/80/155/images/image012_2.gif" width="197" height="45">.gif" width="113" height="45">.gif " width="39" height="41 src="> An. Is the number 1980 a member of this sequence? If yes, then determine its number.

Solution. Let's write out the first ones n members of this sequence:

A 1 = 2, , https://pandia.ru/text/80/155/images/image021.gif" width="63" height="41">.gif" width="108" height="41"> .gif" width="93" height="41">.

Let's multiply these equalities:

A 1A 2A 3A 4A 5…an-2an-1an = A 1A 2A 3A 4A 5…an-2an-1.

From here, an = n(n + 1).

Then, 1980 = n(n+ 1) Û n 2 + n– 1980 = 0 Û n = –45 < 0, n= 44 О N.

Answer: Yes, n = 44.

Problem 4 .

Find the amount S = A 1 + A 2 + A 3 + … + An numbers A 1, A 2, A 3, …,An, which for any natural n satisfy equality Sn = A 1 + 2A 2 + 3A 3 + … + nAn = .

Solution. S 1 = a 1 = 2/3.

For n > 1, nan = SnSn–1 = – https://pandia.ru/text/80/155/images/image029_0.gif" width="216" height="48 src=">.

From here, =https://pandia.ru/text/80/155/images/image032.gif" width="244" height="44">,

A(n + 1)(n + 2) + Bn(n + 2) + Cn(n + 1) = 1

(A + B + C)n 2 + (3A + 2B + C)n + 2A = 1,

Let us equate the coefficients at the corresponding powers n.

n 2 | A + B + C= 0,

n 1 | 3A + 2B+ C = 0,

n0 | 2 A = 1.

Solving the resulting system, we obtain A = 1/2, IN= –1, C = 1/2.

So, https://pandia.ru/text/80/155/images/image034.gif" width="139" height="45 src=">.gif" width="73" height="41">,

Where , , n > 1,

S¢ = https://pandia.ru/text/80/155/images/image040_0.gif" width="233" height="45 src=">=.

S¢¢ = https://pandia.ru/text/80/155/images/image043_0.gif" width="257" height="45 src=">=.

S = A 1 + A 2 + A 3 + … + An = A 1 +=

=A 1 +https://pandia.ru/text/80/155/images/image047_0.gif" width="72" height="41 src=">= =

Problem 5 .

Find the largest term of the sequence .

Solution. Let's put bn = n 2 + 8n – 7 = 9 – (n – 4)2, .

Some people treat the word “progression” with caution, as a very complex term from the branches of higher mathematics. Meanwhile, the simplest arithmetic progression is the work of the taxi meter (where they still exist). And understanding the essence (and in mathematics there is nothing more important than “understanding the essence”) of an arithmetic sequence is not so difficult, having analyzed a few elementary concepts.

Mathematical number sequence

A numerical sequence is usually called a series of numbers, each of which has its own number.

a 1 is the first member of the sequence;

and 2 is the second term of the sequence;

and 7 is the seventh member of the sequence;

and n is the nth member of the sequence;

However, not any arbitrary set of numbers and numbers interests us. We will focus our attention on a numerical sequence in which the value of the nth term is related to its ordinal number by a relationship that can be clearly formulated mathematically. In other words: the numerical value of the nth number is some function of n.

a is the value of a member of a numerical sequence;

n is its serial number;

f(n) is a function, where the ordinal number in the numerical sequence n is the argument.

Definition

An arithmetic progression is usually called a numerical sequence in which each subsequent term is greater (less) than the previous one by the same number. The formula for the nth term of an arithmetic sequence is as follows:

a n - the value of the current member of the arithmetic progression;

a n+1 - formula of the next number;

d - difference (certain number).

It is easy to determine that if the difference is positive (d>0), then each subsequent member of the series under consideration will be greater than the previous one and such an arithmetic progression will be increasing.

In the graph below it is easy to see why the number sequence is called “increasing”.

In cases where the difference is negative (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Specified member value

Sometimes it is necessary to determine the value of any arbitrary term a n of an arithmetic progression. This can be done by sequentially calculating the values ​​of all members of the arithmetic progression, starting from the first to the desired one. However, this path is not always acceptable if, for example, it is necessary to find the value of the five-thousandth or eight-millionth term. Traditional calculations will take a lot of time. However, a specific arithmetic progression can be studied using certain formulas. There is also a formula for the nth term: the value of any term of an arithmetic progression can be determined as the sum of the first term of the progression with the difference of the progression, multiplied by the number of the desired term, reduced by one.

The formula is universal for increasing and decreasing progression.

An example of calculating the value of a given term

Let us solve the following problem of finding the value of the nth term of an arithmetic progression.

Condition: there is an arithmetic progression with parameters:

The first term of the sequence is 3;

The difference in the number series is 1.2.

Task: you need to find the value of 214 terms

Solution: to determine the value of a given term, we use the formula:

a(n) = a1 + d(n-1)

Substituting the data from the problem statement into the expression, we have:

a(214) = a1 + d(n-1)

a(214) = 3 + 1.2 (214-1) = 258.6

Answer: The 214th term of the sequence is equal to 258.6.

The advantages of this method of calculation are obvious - the entire solution takes no more than 2 lines.

Sum of a given number of terms

Very often, in a given arithmetic series, it is necessary to determine the sum of the values ​​of some of its segments. To do this, there is also no need to calculate the values ​​of each term and then add them up. This method is applicable if the number of terms whose sum needs to be found is small. In other cases, it is more convenient to use the following formula.

The sum of the terms of an arithmetic progression from 1 to n is equal to the sum of the first and nth terms, multiplied by the number of the term n and divided by two. If in the formula the value of the nth term is replaced by the expression from the previous paragraph of the article, we get:

Calculation example

For example, let’s solve a problem with the following conditions:

The first term of the sequence is zero;

The difference is 0.5.

The problem requires determining the sum of the terms of the series from 56 to 101.

Solution. Let's use the formula for determining the amount of progression:

s(n) = (2∙a1 + d∙(n-1))∙n/2

First, we determine the sum of the values ​​of 101 terms of the progression by substituting the given conditions of our problem into the formula:

s 101 = (2∙0 + 0.5∙(101-1))∙101/2 = 2,525

Obviously, in order to find out the sum of the terms of the progression from the 56th to the 101st, it is necessary to subtract S 55 from S 101.

s 55 = (2∙0 + 0.5∙(55-1))∙55/2 = 742.5

Thus, the sum of the arithmetic progression for this example is:

s 101 - s 55 = 2,525 - 742.5 = 1,782.5

Example of practical application of arithmetic progression

At the end of the article, let's return to the example of an arithmetic sequence given in the first paragraph - a taximeter (taxi car meter). Let's consider this example.

Boarding a taxi (which includes 3 km of travel) costs 50 rubles. Each subsequent kilometer is paid at the rate of 22 rubles/km. Travel distance is 30 km. Calculate the cost of the trip.

1. Let’s discard the first 3 km, the price of which is included in the cost of landing.

30 - 3 = 27 km.

2. Further calculation is nothing more than parsing an arithmetic number series.

Member number - the number of kilometers traveled (minus the first three).

The value of the member is the sum.

The first term in this problem will be equal to a 1 = 50 rubles.

Progression difference d = 22 r.

the number we are interested in is the value of the (27+1)th term of the arithmetic progression - the meter reading at the end of the 27th kilometer is 27.999... = 28 km.

a 28 = 50 + 22 ∙ (28 - 1) = 644

Calendar data calculations for an arbitrarily long period are based on formulas describing certain numerical sequences. In astronomy, the length of the orbit is geometrically dependent on the distance of the celestial body to the star. In addition, various number series are successfully used in statistics and other applied areas of mathematics.

Another type of number sequence is geometric

Geometric progression characterized by large, compared to arithmetic, rates of change. It is no coincidence that in politics, sociology, and medicine, in order to show the high speed of spread of a particular phenomenon, for example, a disease during an epidemic, they say that the process develops in geometric progression.

The Nth term of the geometric number series differs from the previous one in that it is multiplied by some constant number - the denominator, for example, the first term is 1, the denominator is correspondingly equal to 2, then:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - the value of the current term of the geometric progression;

b n+1 - formula of the next term of the geometric progression;

q is the denominator of the geometric progression (a constant number).

If the graph of an arithmetic progression is a straight line, then a geometric progression paints a slightly different picture:

As in the case of arithmetic, geometric progression has a formula for the value of an arbitrary term. Any nth term of a geometric progression is equal to the product of the first term and the denominator of the progression to the power of n reduced by one:

Example. We have a geometric progression with the first term equal to 3 and the denominator of the progression equal to 1.5. Let's find the 5th term of the progression

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1.5 4 = 15.1875

The sum of a given number of terms is also calculated using a special formula. The sum of the first n terms of a geometric progression is equal to the difference between the product of the nth term of the progression and its denominator and the first term of the progression, divided by the denominator reduced by one:

If b n is replaced using the formula discussed above, the value of the sum of the first n terms of the number series under consideration will take the form:

Example. The geometric progression starts with the first term equal to 1. The denominator is set to 3. Let's find the sum of the first eight terms.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280

Before we start deciding arithmetic progression problems, let's consider what a number sequence is, since an arithmetic progression is a special case of a number sequence.

A number sequence is a number set, each element of which has its own serial number. The elements of this set are called members of the sequence. The serial number of a sequence element is indicated by an index:

The first element of the sequence;

The fifth element of the sequence;

- the “nth” element of the sequence, i.e. element "standing in queue" at number n.

There is a relationship between the value of a sequence element and its sequence number. Therefore, we can consider a sequence as a function whose argument is the ordinal number of the element of the sequence. In other words, we can say that the sequence is a function of the natural argument:

The sequence can be set in three ways:

1 . The sequence can be specified using a table. In this case, we simply set the value of each member of the sequence.

For example, Someone decided to take up personal time management, and to begin with, count how much time he spends on VKontakte during the week. By recording the time in the table, he will receive a sequence consisting of seven elements:

The first line of the table indicates the number of the day of the week, the second - the time in minutes. We see that, that is, on Monday Someone spent 125 minutes on VKontakte, that is, on Thursday - 248 minutes, and, that is, on Friday only 15.

2 . The sequence can be specified using the nth term formula.

In this case, the dependence of the value of a sequence element on its number is expressed directly in the form of a formula.

For example, if , then

To find the value of a sequence element with a given number, we substitute the element number into the formula of the nth term.

We do the same thing if we need to find the value of a function if the value of the argument is known. We substitute the value of the argument into the function equation:

If, for example, , That

Let me note once again that in a sequence, unlike an arbitrary numerical function, the argument can only be a natural number.

3 . The sequence can be specified using a formula that expresses the dependence of the value of the sequence member number n on the values ​​of the previous members. In this case, it is not enough for us to know only the number of the sequence member to find its value. We need to specify the first member or first few members of the sequence.

For example, consider the sequence ,

We can find the values ​​of sequence members in sequence, starting from the third:

That is, every time, to find the value of the nth term of the sequence, we return to the previous two. This method of specifying a sequence is called recurrent, from the Latin word recurro- come back.

Now we can define an arithmetic progression. An arithmetic progression is a simple special case of a number sequence.

Arithmetic progression is a numerical sequence, each member of which, starting from the second, is equal to the previous one added to the same number.


The number is called difference of arithmetic progression. The difference of an arithmetic progression can be positive, negative, or equal to zero.

If title="d>0">, то каждый член арифметической прогрессии больше предыдущего, и прогрессия является !} increasing.

For example, 2; 5; 8; eleven;...

If , then each term of an arithmetic progression is less than the previous one, and the progression is decreasing.

For example, 2; -1; -4; -7;...

If , then all terms of the progression are equal to the same number, and the progression is stationary.

For example, 2;2;2;2;...

The main property of an arithmetic progression:

Let's look at the drawing.

We see that

, and at the same time

Adding these two equalities, we get:

.

Let's divide both sides of the equality by 2:

So, each member of the arithmetic progression, starting from the second, is equal to the arithmetic mean of the two neighboring ones:

Moreover, since

, and at the same time

, That

, and therefore

Each term of an arithmetic progression, starting with title="k>l">, равен среднему арифметическому двух равноотстоящих. !}

Formula of the th term.

We see that the terms of the arithmetic progression satisfy the following relations:

and finally

We got formula of the nth term.

IMPORTANT! Any member of an arithmetic progression can be expressed through and. Knowing the first term and the difference of an arithmetic progression, you can find any of its terms.

The sum of n terms of an arithmetic progression.

In an arbitrary arithmetic progression, the sums of terms equidistant from the extreme ones are equal to each other:

Consider an arithmetic progression with n terms. Let the sum of n terms of this progression be equal to .

Let's arrange the terms of the progression first in ascending order of numbers, and then in descending order:

Let's add in pairs:

The sum in each bracket is , the number of pairs is n.

We get:

So, the sum of n terms of an arithmetic progression can be found using the formulas:

Let's consider solving arithmetic progression problems.

1 . The sequence is given by the formula of the nth term: . Prove that this sequence is an arithmetic progression.

Let us prove that the difference between two adjacent terms of the sequence is equal to the same number.

We found that the difference between two adjacent members of the sequence does not depend on their number and is a constant. Therefore, by definition, this sequence is an arithmetic progression.

2 . Given an arithmetic progression -31; -27;...

a) Find 31 terms of the progression.

b) Determine whether the number 41 is included in this progression.

A) We see that ;

Let's write down the formula for the nth term for our progression.

In general

In our case , That's why

If for every natural number n match a real number a n , then they say that it is given number sequence :

a 1 , a 2 , a 3 , . . . , a n , . . . .

So, the number sequence is a function of the natural argument.

Number a 1 called first term of the sequence , number a 2 second term of the sequence , number a 3 third and so on. Number a n called nth member of the sequence , and a natural number nhis number .

From two adjacent members a n And a n +1 sequence member a n +1 called subsequent (towards a n ), A a n previous (towards a n +1 ).

To define a sequence, you need to specify a method that allows you to find a member of the sequence with any number.

Often the sequence is specified using nth term formulas , that is, a formula that allows you to determine a member of a sequence by its number.

For example,

a sequence of positive odd numbers can be given by the formula

a n= 2n- 1,

and the sequence of alternating 1 And -1 - formula

b n = (-1)n +1 .

The sequence can be determined recurrent formula, that is, a formula that expresses any member of the sequence, starting with some, through the previous (one or more) members.

For example,

If a 1 = 1 , A a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

If a 1= 1, a 2 = 1, a n +2 = a n + a n +1 , then the first seven terms of the numerical sequence are established as follows:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Sequences can be final And endless .

The sequence is called ultimate , if it has a finite number of members. The sequence is called endless , if it has infinitely many members.

For example,

sequence of two-digit natural numbers:

10, 11, 12, 13, . . . , 98, 99

final.

Sequence of prime numbers:

2, 3, 5, 7, 11, 13, . . .

endless.

The sequence is called increasing , if each of its members, starting from the second, is greater than the previous one.

The sequence is called decreasing , if each of its members, starting from the second, is less than the previous one.

For example,

2, 4, 6, 8, . . . , 2n, . . . — increasing sequence;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /n, . . . — decreasing sequence.

A sequence whose elements do not decrease as the number increases, or, conversely, do not increase, is called monotonous sequence .

Monotonic sequences, in particular, are increasing sequences and decreasing sequences.

Arithmetic progression

Arithmetic progression is a sequence in which each member, starting from the second, is equal to the previous one, to which the same number is added.

a 1 , a 2 , a 3 , . . . , a n, . . .

is an arithmetic progression if for any natural number n the condition is met:

a n +1 = a n + d,

Where d - a certain number.

Thus, the difference between the subsequent and previous terms of a given arithmetic progression is always constant:

a 2 - a 1 = a 3 - a 2 = . . . = a n +1 - a n = d.

Number d called difference of arithmetic progression.

To define an arithmetic progression, it is enough to indicate its first term and difference.

For example,

If a 1 = 3, d = 4 , then we find the first five terms of the sequence as follows:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d= 7 + 4 = 11,

a 4 = a 3 + d= 11 + 4 = 15,

a 5 = a 4 + d= 15 + 4 = 19.

For an arithmetic progression with the first term a 1 and the difference d her n

a n = a 1 + (n- 1)d.

For example,

find the thirtieth term of the arithmetic progression

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n- 2)d,

a n= a 1 + (n- 1)d,

a n +1 = a 1 + nd,

then obviously

a n=
a n-1 + a n+1
2

Each member of an arithmetic progression, starting from the second, is equal to the arithmetic mean of the preceding and subsequent members.

the numbers a, b and c are successive terms of some arithmetic progression if and only if one of them is equal to the arithmetic mean of the other two.

For example,

a n = 2n- 7 , is an arithmetic progression.

Let's use the above statement. We have:

a n = 2n- 7,

a n-1 = 2(n- 1) - 7 = 2n- 9,

a n+1 = 2(n+ 1) - 7 = 2n- 5.

Hence,

a n+1 + a n-1
=
2n- 5 + 2n- 9
= 2n- 7 = a n,
2
2

Note that n The th term of an arithmetic progression can be found not only through a 1 , but also any previous a k

a n = a k + (n- k)d.

For example,

For a 5 can be written down

a 5 = a 1 + 4d,

a 5 = a 2 + 3d,

a 5 = a 3 + 2d,

a 5 = a 4 + d.

a n = a n-k + kd,

a n = a n+k - kd,

then obviously

a n=
a n-k + a n+k
2

any member of an arithmetic progression, starting from the second, is equal to half the sum of the equally spaced members of this arithmetic progression.

In addition, for any arithmetic progression the following equality holds:

a m + a n = a k + a l,

m + n = k + l.

For example,

in arithmetic progression

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d= 7 + 7 3 = 7 + 21 = 28;

3) a 10= 28 = (19 + 37)/2 = (a 7 + a 13)/2;

4) a 2 + a 12 = a 5 + a 9, because

a 2 + a 12= 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n= a 1 + a 2 + a 3 + . . .+ a n,

first n terms of an arithmetic progression is equal to the product of half the sum of the extreme terms and the number of terms:

From here, in particular, it follows that if you need to sum the terms

a k, a k +1 , . . . , a n,

then the previous formula retains its structure:

For example,

in arithmetic progression 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

If an arithmetic progression is given, then the quantities a 1 , a n, d, n AndS n connected by two formulas:

Therefore, if the values ​​of three of these quantities are given, then the corresponding values ​​of the other two quantities are determined from these formulas, combined into a system of two equations with two unknowns.

An arithmetic progression is a monotonic sequence. Wherein:

  • If d > 0 , then it is increasing;
  • If d < 0 , then it is decreasing;
  • If d = 0 , then the sequence will be stationary.

Geometric progression

Geometric progression is a sequence in which each member, starting from the second, is equal to the previous one multiplied by the same number.

b 1 , b 2 , b 3 , . . . , b n, . . .

is a geometric progression if for any natural number n the condition is met:

b n +1 = b n · q,

Where q ≠ 0 - a certain number.

Thus, the ratio of the subsequent term of a given geometric progression to the previous one is a constant number:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q.

Number q called denominator of geometric progression.

To define a geometric progression, it is enough to indicate its first term and denominator.

For example,

If b 1 = 1, q = -3 , then we find the first five terms of the sequence as follows:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q= -3 · (-3) = 9,

b 4 = b 3 · q= 9 · (-3) = -27,

b 5 = b 4 · q= -27 · (-3) = 81.

b 1 and denominator q her n The th term can be found using the formula:

b n = b 1 · qn -1 .

For example,

find the seventh term of the geometric progression 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 2 6 = 64.

b n-1 = b 1 · qn -2 ,

b n = b 1 · qn -1 ,

b n +1 = b 1 · qn,

then obviously

b n 2 = b n -1 · b n +1 ,

each member of the geometric progression, starting from the second, is equal to the geometric mean (proportional) of the preceding and subsequent members.

Since the converse is also true, the following statement holds:

the numbers a, b and c are successive terms of some geometric progression if and only if the square of one of them is equal to the product of the other two, that is, one of the numbers is the geometric mean of the other two.

For example,

Let us prove that the sequence given by the formula b n= -3 2 n , is a geometric progression. Let's use the above statement. We have:

b n= -3 2 n,

b n -1 = -3 2 n -1 ,

b n +1 = -3 2 n +1 .

Hence,

b n 2 = (-3 2 n) 2 = (-3 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

which proves the desired statement.

Note that n The th term of a geometric progression can be found not only through b 1 , but also any previous member b k , for which it is enough to use the formula

b n = b k · qn - k.

For example,

For b 5 can be written down

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3,

b 5 = b 3 · q 2,

b 5 = b 4 · q.

b n = b k · qn - k,

b n = b n - k · q k,

then obviously

b n 2 = b n - k· b n + k

the square of any term of a geometric progression, starting from the second, is equal to the product of the terms of this progression equidistant from it.

In addition, for any geometric progression the equality is true:

b m· b n= b k· b l,

m+ n= k+ l.

For example,

in geometric progression

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , because

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n= b 1 + b 2 + b 3 + . . . + b n

first n members of a geometric progression with denominator q 0 calculated by the formula:

And when q = 1 - according to the formula

S n= nb 1

Note that if you need to sum the terms

b k, b k +1 , . . . , b n,

then the formula is used:

S n- S k -1 = b k + b k +1 + . . . + b n = b k · 1 - qn - k +1
.
1 - q

For example,

in geometric progression 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

If a geometric progression is given, then the quantities b 1 , b n, q, n And S n connected by two formulas:

Therefore, if the values ​​of any three of these quantities are given, then the corresponding values ​​of the other two quantities are determined from these formulas, combined into a system of two equations with two unknowns.

For a geometric progression with the first term b 1 and denominator q the following take place properties of monotonicity :

  • progression is increasing if one of the following conditions is met:

b 1 > 0 And q> 1;

b 1 < 0 And 0 < q< 1;

  • The progression is decreasing if one of the following conditions is met:

b 1 > 0 And 0 < q< 1;

b 1 < 0 And q> 1.

If q< 0 , then the geometric progression is alternating: its terms with odd numbers have the same sign as its first term, and terms with even numbers have the opposite sign. It is clear that an alternating geometric progression is not monotonic.

Product of the first n terms of a geometric progression can be calculated using the formula:

P n= b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n) n / 2 .

For example,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Infinitely decreasing geometric progression

Infinitely decreasing geometric progression called an infinite geometric progression whose denominator modulus is less 1 , that is

|q| < 1 .

Note that an infinitely decreasing geometric progression may not be a decreasing sequence. It fits the occasion

1 < q< 0 .

With such a denominator, the sequence is alternating. For example,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

The sum of an infinitely decreasing geometric progression name the number to which the sum of the first ones approaches without limit n members of a progression with an unlimited increase in the number n . This number is always finite and is expressed by the formula

S= b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

For example,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Relationship between arithmetic and geometric progressions

Arithmetic and geometric progressions are closely related. Let's look at just two examples.

a 1 , a 2 , a 3 , . . . d , That

b a 1 , b a 2 , b a 3 , . . . b d .

For example,

1, 3, 5, . . . - arithmetic progression with difference 2 And

7 1 , 7 3 , 7 5 , . . . - geometric progression with denominator 7 2 .

b 1 , b 2 , b 3 , . . . - geometric progression with denominator q , That

log a b 1, log a b 2, log a b 3, . . . - arithmetic progression with difference log aq .

For example,

2, 12, 72, . . . - geometric progression with denominator 6 And

lg 2, lg 12, lg 72, . . . - arithmetic progression with difference lg 6 .