Выделительная система. Химические элементы в организме человека

Неорганические вещества — такие химические соединения, которые в отличие от органических не содержат углерода (кроме цианидов, карбидов, карбонатов и некоторых прочих соединений, традиционно относящихся к этой группе).

Классификация неорганических веществ следующая. Существую простые вещества: неметаллы (H2, N2, O2), металлы(Na, Zn, Fe), амфотерные простые вещества (Mn, Zn, Al), благородные газы (Xe, He, Rn) и сложные вещества: оксиды (H2O, CO2, P2O5); гидроксиды (Ca(OH)2, H2SO4); соли (CuSO4, NaCl, KNO3, Ca3(PO4)2) и бинарные соединения.

Молекулы простых (одноэлементных) веществ состоят только из атомов определенного (одного) вида (элемента). Они не разлагаются в химических реакциях и не способны к образованию других веществ. Простые вещества в свою очередь подразделяются на металлы и неметаллы. Четкой границы между ними не существует из-за способности простых веществ проявлять двойственный свойства. Некоторые элементы одновременно проявляют свойства и металлов, и неметаллов. Их называют амфотерными.

Благородные газы - это неорганические вещества отдельного класса; они выделяются среди прочих особым своеобразием. VIIIA-группы.

Способность некоторых элементов образовывать несколько простых, отличающихся строением и свойствами, называется аллотропией. Примерами могут быть элементы С, образующий алмаз карбин и графит; О - озон и кислород; Р - белый, красный, черный и другие. Такое явление возможно из-за разного числа атомов в молекуле и благодаря способности образования атомами разных кристаллических форм.

Помимо простых основные классы неорганических веществ включают сложные соединения. Под сложными (двух- или многоэлементными) веществами понимают соединения химических элементов. Их молекулы состоят из атомов разных видов (разных элементов). При разложениях в химических реакциях они образуют несколько других веществ. Делятся на основания, и соли.

В основаниях атомы металлов соединены с гидроксильными группами (или одной группой). Эти соединения делятся на растворимые (щелочи) и нерастворимые в воде.

Оксиды состоят из двух элементов, одним из которых обязательно является кислород. Они бывают несолеобразующими и солеобразующими.

Гидроксиды - это вещества, которые образуются при взаимодействии (прямом или косвенном) с водой. К ним относятся: основания (Al(OH)3, Ca(OH)2), кислоты (HCl, H2SO4, HNO3, H3PO4), (Al(OH)3,Zn(OH)2). При взаимодействии разных типов гидроксидов между собой образуются кислородсодержащие соли.

Соли делятся на средние (состоят из катионов и анионов - Ca3(PO4)2, Na2SO4); кислые (содержат в кислотном остатке атомы водорода, которые могут замещаться катионами -NaHSO3, CaHPO4), основные (имеют в составе гидроксо- или оксогруппу - Cu2CO3(OH)2); двойные (содержат два разных химически катиона) и/или комплексные (содержат два разных кислотных остатка) соли (CaMg(CO3)2, K3).

Бинарные соединения (довольно большой класс веществ) делятся на кислоты бескислородные (H2S, HCl); соли бескислородные (CaF2, NaCl) и прочие соединения (CaC2, AlH3, CS2).

Неорганические вещества не имеют углеродного скелета, который является основой органических соединений.

В организме человека есть как (34%), так неорганические соединения. К последним относятся, в первую очередь, вода (60%) и соли кальция, из которых преимущественно состоит скелет человека.

Неорганические вещества в человеческом организме представлены 22 химическими элементами. Большинство из них являются металлами. В зависимости от концентрации элементов в организме их называют микро- (содержание в организме которых не более 0,005% от массы тела) и макроэлементами. Незаменимыми для организма микроэлементами являются йод, железо, медь, цинк, марганец, молибден, кобальт, хром, селен, фтор. Их поступление с пищей в организм необходимо для его нормальной жизнедеятельности. Макроэлементы такие как кальций, фосфор и хлор являются основой многих тканей.

Химический состав клетки

Минеральные соли

вода .
хороший растворитель

Гидрофильными (от греч. гидро - вода и филео

Гидрофобными (от греч. гидро - вода и фобос

упругость

Вода. Вода-универсальный растворитель гидрофильными. 2- гидрофобными. .3- теплоемкостью. 4- Вода характеризуется 5- 6- Вода обеспечивает передвижение веществ 7- У растений вода определяет тургор опорные функции, 8- Вода - составная часть смазывающих жидкостей слизей

Минеральные соли. потенциала действия ,

Физико-химические свойства воды как основной среды в организме человека.

Из неорганических веществ, входящих в состав клетки, важнейшим является вода. Количество ее составляет от 60 до 95% общей массы клетки. Вода играет важнейшую роль в жизни клеток и живых организмов в целом. Помимо того что она входит в их состав, для многих организмов это еще и среда обитания. Роль воды в клетке определяется ее уникальными химическими и физическими свойствами, связанными главным образом с малыми размерами молекул, с полярностью ее молекул и с их способностью образовывать друг с другом водородные связи.

Липиды. Функции липидов в организме человека.

Липиды - большая группа веществ биологического происхождения, хорошо растворимых в органических растворителях, таких, как метанол, ацетон, хлороформ и бензол. В то же время эти вещества нерастворимы или мало растворимы в воде. Слабая растворимость связана с недостаточным содержанием в молекулах липидов атомов с поляризующейся электронной оболочкой, таких, как О, N, S или P.

Система гуморальной регуляции физиологических функций. Принципы гум..

Гуморальная физиологическая регуляция для передачи информации использует жидкие среды организма (кровь, лимфу, цереброспинальную жидкость и т.д.) Сигналы передаются посредством химических веществ: гормонов, медиаторов, биологически активных веществ (БАВ), электролитов и т.д.

Особенности гуморальной регуляции: не имеет точного адресата – с током биологических жидкостей вещества могут доставляться к любым клеткам организма; скорость доставки информации небольшая – определяется скоростью тока биологических жидкостей – 0,5-5 м/с; продолжительность действия.

Передача гуморальной регуляции осуществляется током крови, лимфы, путем диффузии, нервная - поступает нервными волокнами. Гуморальный сигнал распространяется медленнее (с током крови капилляром со скоростью 0,05 мм / с), чем нервный (скорость нервной передачи составляет 130 м / с). Гуморальный сигнал не имеет такого точного адресата (работает по принципу «всем, всем, всем»), как нервный (например, нервный импульс передается сокращающихся мышц пальца). Но эта разница не существенна, поскольку клетки имеют разную чувствительность к химическим веществам. Поэтому химические вещества действуют на строго определенные клетки, то есть на те, которые способны воспринимать эту информацию. Клетки, которые обладают такой высокой чувствительностью к любому гуморального фактора, называются клетками-мишенями.
Среди гуморальных факторов выделяют вещества с узким
спектром действия, то есть направленной действием на ограниченное количество клеток-мишеней (например, окситоцин), и шире (например, адреналин), для которых имеется значительное количество клеток-мишеней.
Гуморальная регуляция используется для обеспечения реакций, не требующих высокой скорости и точности исполнения.
Гуморальная регуляция, как и нервная, всегда выполняется
замкнутым контуром регуляции, в котором все элементы связаны между собой каналами.
Что касается элемента контура прибора, который следит (СП), то в контуре гуморальной регуляции как самостоятельная структура он отсутствует. Функцию этого звена выполняет, как правило, инкреторная
клетка.
Гуморальные вещества, которые попадают в кровь или лимфу, диффундируют в межклеточную жидкость и быстро разрушаются. В связи с этим действие их может распространяться только на близко расположенные клетки-органы, то есть их влияние имеет местный характер. В противовес местным действия дистантный влияние гуморальных веществ распространяется на клетки-мишени на расстоянии.

ГОРМОНЫ ГИПОТАЛАМУСА

гормон эффект

Кортиколиберин - Стимулирует образование кортикотропина и липотропина
Гонадолиберин - Стимулирует образование лютропина и фоллитропина
Пролактолиберин - Способствует выделению пролактина
Пролактостатин - Ингибирует выделение пролактина
Соматолиберин Стимулирует секрецию гормона роста
Соматостатин - Ингибирует секрецию гормона роста и тиреотропина
Тиролиберин - Стимулирует секрецию тиреотропина и пролактина
Меланолиберин - Стимулирует секрецию меланоцит-стимулирующего гормона
Меланостатин - Ингибирует секрецию меланоцит-стимулирующего гормона

ГОРМОНЫ АДЕНОГИПОФИЗА

СТГ (соматотропин, гормон роста) - Стимулирует рост организма, синтез белка в клетках, образование глюкозы и распад липидов
Пролактин - Регулирует лактацию у млекопитающих, инстинкт выхаживания потомства, дифференцировку различных тканей
ТТГ (тиреотропин) - Регулирует биосинтез и секрецию гормонов щитовидной железы
Кортикотропин - Регулирует секрецию гормонов коры надпочечников
ФСГ (фоллитропин) и ЛГ (лютеинизирующий гормон) - ЛГ регулирует синтез женских и мужских половых гормонов, стимулирует рост и созревание фолликулов, овуляцию, образование и функционирование желтого тела в яичниках ФСГ оказывает сенсибилизирующее действие на фолликулы и клетки Лейдига к действию ЛГ, стимулирует сперматогенез

ГОРМОНЫ ЩИТОВИДНОЙ ЖЕЛЕЗЫ Выделение гормонов щитовидной железы контролируется двумя «вышестоящими» эндокринными железами. Область головного мозга, связывающая воедино нервную и эндокринную систему, называется гипоталамус. Гипоталамус получает информацию об уровне гормонов щитовидной железы и выделяет вещества, влияющие на гипофиз.Гипофиз также расположен в головном мозге в области специального углубления - турецкого седла. Он выделяет несколько десятков сложных по строению и действию гормонов, но на щитовидную железу действует только один из них -тиреотропный гормон или ТТГ. Уровень гормонов щитовидной железы в крови и сигналы от гипоталамуса стимулируют или тормозят выделение ТТГ. Например, если количество тироксина в крови маленькое, тогда про это будут знать и гипофиз и гипоталамус. Гипофиз немедленно выделит ТТГ, что активирует выброс гормонов из щитовидной железы.

Гуморальная регуляция – это координация физиологических функций организма человека через кровь, лимфу, тканевую жидкость. Гуморальная регуляция осуществляется биологически активными веществами – гормонами, которые регулируют функции организма на субклеточном, клеточном, тканевом, органном и системном уровнях и медиаторами, которые передают нервные импульсы. Гормоны образуются железами внутренней секреции (эндокринные), а также железами внешней секреции (тканевые – стенками желудка, кишечника и другие). Гормоны влияют на обмен веществ и деятельность различных органов, поступая к ним через кровь. Гормоны имеют следующие свойства: Высокую биологическую активность; Специфичность – воздействие на определенные органы, ткани, клетки; Быстро разрушаются в тканях; Размеры молекул малы, проникновения через стенки капилляров в ткани осуществляется легко.

Надпо́чечники - парные эндокринные железыпозвоночных животных и человека . В клубочковой зоне образуются гормоны, называемые минералкортикоидами . К ним относятся:Альдостерон (основной минералокортикостероидныйгормонкоры надпочечников ) Кортикостерон (малозначимый и сравнительно малоактивный глюкокортикоидныйгормон ). Минералкортикоиды повышают реабсорбцию Na + и выделение K + в почках. В пучковой зоне образуются глюкокортикоиды , к которым относятся:Кортизол . Глюкокортикоиды оказывают важное действие почти на все процессы обмена веществ. Они стимулируют образование глюкозы из жиров и аминокислот (глюконеогенез ), угнетают воспалительные , иммунные и аллергические реакции, уменьшают разрастание соединительной ткани , а также повышают чувствительность органов чувств и возбудимостьнервной системы . В сетчатой зоне производятся половые гормоны (андрогены , являющиеся веществами - предшественниками эстрогенов ). Данные половые гормоны играют роль несколько иную, чем гормоны, выделяемые половыми железами . Клетки мозгового вещества надпочечников вырабатывают катехоламины - адреналин и норадреналин . Эти гормоны повышают артериальное давление, усиливают работу сердца, расширяют просветы бронхов, увеличивают уровень сахара в крови. В состоянии покоя они постоянно выделяют небольшие количества катехоламинов. Под влиянием стрессовой ситуации секреция адреналина и норадреналина клетками мозгового слоя надпочечников резко повышается.

Мембранный потенциал покоя - это дефицит положительных электрических зарядов внутри клетки, возникающий за счёт утечки из неё положительных ионов калия и электрогенного действия натрий-калиевого насоса.

Потенциал действия (ПД). Все раздражители, действующие на клетку, вызывают в первую очередь снижение ПП; когда оно достигает критического значения (порога), возникает активный распространяющийся ответ - ПД. Амплитуда ПД примерно = 110-120 мв. Характерной особенностью ПД, отличающей его от других форм ответа клетки на раздражение, является то, что он подчиняется правилу "всё или ничего", т. е. возникает только при достижении раздражителем некоторого порогового значения, и дальнейшее увеличение интенсивности раздражителя уже не сказывается ни на амплитуде, ни на продолжительности ПД. Потенциал действия - один из важнейших компонентов процесса возбуждения. В нервных волокнах он обеспечивает проведение возбуждения от чувствительных окончаний (рецепторов ) к телу нервной клетки и от неё - к синаптическим окончаниям, расположенным на различных нервных, мышечных или железистых клетках. Проведение ПД вдоль нервных и мышечных волокон осуществляется т. н. локальными токами, или токами действия, возникающими между возбуждённым (деполяризованным) и соседними с ним покоящимися участками мембраны.

Постсинаптические потенциалы (ПСП) возникают в участках мембраны нервных или мышечных клеток, непосредственно граничащих с синаптическими окончаниями. Они имеют амплитуду порядка несколькихмв и длительность 10-15 мсек . ПСП подразделяются на возбуждающие (ВПСП) и тормозные (ТПСП).

Генераторные потенциалы возникают в мембране чувствительных нервных окончаний - рецепторов. Их амплитуда порядка нескольких мв и зависит от силы приложенного к рецептору раздражения. Ионный механизм генераторных потенциалов ещё недостаточно изучен.

Потенциал действия

Потенциалом действия называют быстрое изменение мембранного потенциала, возникающее при возбуждении нервных, мышечных и некоторых железистых клеток. В основе его возникновения лежат изменения ионной проницаемости мембраны. В развитии потенциала действия выделяют четыре последовательных периода: локальный ответ, деполяризация, реполяризация и следовые потенциалы.

Раздражимость - способность живого организма реагировать на внешнее воздействие изменением своих физико-химических и физиологических свойств. Раздражимость проявляется в изменениях текущих значений физиологических параметров, превышающих их сдвиги при покое. Раздражимость является универсальным проявлением жизнедеятельности всех биосистем. Эти изменения окружающей среды, вызывающие реакцию организма, могут включать в себя широкий репертуар реакций, начиная с диффузных реакций протоплазмы у простейших и кончая сложными, высокоспециализованными реакциями у человека. В организме человека раздражимость часто связана со свойством нервной, мышечной и железистой тканей осуществлять ответную реакцию в виде выработки нервного импульса, мышечного сокращения или секреции веществ (слюны, гормонов и т. д.). У живых организмов, лишенных нервной системы, раздражимость может проявляться в движениях. Так, амебы и другие простейшие покидают неблагоприятные растворы с высокой концентрацией соли. А растения изменяют положение побегов для максимального поглощения света (тянутся к свету). Раздражимость - фундаментальное свойство живых систем: её наличие - классический критерий, по которому отличают живое от неживого. Минимальная величина раздражителя, достаточная для проявления раздражимости, называется порогом восприятия. Явления раздражимости у растений и животных имеют много общего, хотя их проявления у растений резко отличаются от привычных форм двигательной и нервной деятельности животных

Законы раздражения возбудимых тканей: 1) закон силы – возбудимость обратно-пропорциональна пороговой силе: чем больше пороговая сила, тем меньше возбудимость. Однако для возникновения возбуждения недостаточно только действия силы раздражения. Необходимо, чтобы это раздражение длилось какое-то время; 2) закон времени действия раздражителя. При действии одной и той же силы на разные ткани потребуется разная длительность раздражения, что зависит от способности данной ткани к проявлению своей специфической деятельности, то есть возбудимости: наименьшее время потребуется для ткани с высокой возбудимостью и наибольшее время - с низкой возбудимостью. Таким образом, возбудимость обратно-пропорциональна времени действия раздражителя: чем меньше время действия раздражителя, тем больше возбудимость. Возбудимость ткани определяется не только силой и длительностью раздражения, но и скоростью (быстротой) нарастания силы раздражения, что определяется третьим законом - законом скорости нарастания силы раздражения (отношения силы раздражителя ко времени его действия): чем больше скорость нарастания силы раздражения, тем меньше возбудимость. Для каждой ткани существует своя пороговая скорость нарастания силы раздражения.

Способность ткани изменять свою специфическую деятельность в ответ на раздражение (возбудимость) находится в обратной зависимости от величины пороговой силы, времени действия раздражителя и быстроты (скорости) нарастания силы раздражения.

Критический уровень деполяризации - величина мембранного потенциала, при достижении которой возникает потенциал действия. Критический уровень деполяризации (КУД) - это такой уровень электрического потенциала мембраны возбудимой клетки, от которого локальный потенциал переходит в потенциал действия.

Локальный ответ возникает на допороговые стимулы; распространяется на 1-2 мм с затуханием; возрастает с увеличением силы стимула, т.е. подчиняется закону «силы»; суммируется – возрастает при повторных частых допороговых раздражениях 10 – 40 мВ увеличивается.

Химический механизм синаптической передачи по сравнению с электрическим более эффективно обеспечивает основные функции синапса: 1) одностороннее проведение сигнала; 2) усиление сигнала; 3) конвергенцию многих сигналов на одной постсинаптической клетке, пластичность передачи сигналов.

Химические синапсы передают два вида сигналов – возбуждающий и тормозной. В возбуждающих синапсах нейромедиа-тор, освобождаемый из пресинаптических нервных окончаний, вызывает в постсинаптической мембране возбуждающий пост-синаптический потенциал – локальную деполяризацию, а в тормозных синапсах – тормозной постсинаптический потенциал, как правило, – гиперполяризацию. Снижение сопротивления мембраны, происходящее во время тормозного постсинаптического потенциала, ведет к короткому замыканию возбуждающего постсинаптического тока, тем самым ослабляя или блокируя передачу возбуждения.

Химический состав клетки

Организмы состоят из клеток. Клетки разных организмов обладают сходным химическим составом. В клетках живых организмов встречается около 90 элементов, причем примерно 25 из обнаружены практически во всех клетках. По содержанию в клетке химические элементы подразделяются на три большие группы: макроэлементы(99%), микроэлементы(1%), ультрамикроэлементы(менее 0,001%).

К макроэлементам относятся кислород, углерод, водород, фосфор, калий, сера, хлор, кальций, магний, натрий, железо.К микроэлеметам относятся марганец, медь, цинк, йод, фтор.К ультрамикроэлементам относятся серебро, золото, бром, селен.

Недостаток какого-либо элемента может привести к заболеванию, и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров - белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор - в состав нуклеиновых кислот, железо - в состав гемоглобина, а магний - в состав хлорофилла. Кальций играет важную роль в обмене веществ.Часть химических элементов, содержащихся в клетке, входит в состав неорганических веществ - минеральных солей и воды.

Минеральные соли находятся в клетке, как правило, в виде катионов (К + , Na + , Ca 2+ , Mg 2+) и анионов (HPO 2-/4 , H 2 PO -/4 , СI - , НСО 3), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды.

Из неорганических веществ в живой природе огромную роль играет вода .
Она составляет значительную массу большинства клеток. Много воды содержится в клетках мозга и эмбрионов человека: воды более 80%; в клетках жировой ткани - всего 40.% К старости содержание воды в клетках снижается. Человек, потерявший 20% воды, погибает.Уникальные свойства воды определяют ее роль в организме. Она участвует в теплорегуляции, которая обусловлена высокой теплоемкостью воды - потреблением большого количества энергии при нагревании. Вода - хороший растворитель . Благодаря полярности ее молекулы взаимодействуют с положительно и отрицательно заряженными ионами, способствуя тем самым растворению вещества. По отношению к воде все вещества клетки делятся на гидрофильные и гидрофобные.

Гидрофильными (от греч. гидро - вода и филео - люблю) называют вещества, которые растворяются в воде. К ним относят ионные соединения (например, соли) и некоторые не ионные соединения (например, сахара).

Гидрофобными (от греч. гидро - вода и фобос - страх) называют вещества, нерастворимые в воде. К ним относят, например, липиды.

Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость . Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.

Неорганические соединения в организме человека.

Вода. Из неорганических веществ, входящих в состав клетки, важнейшим является вода. Количество ее составляет от 60 до 95% общей массы клетки. Вода играет важнейшую роль в жизни клеток и живых организмов в целом. Помимо того что она входит в их состав, для многих организмов это еще и среда обитания. Роль воды в клетке определяется ее уникальными химическими и физическими свойствами, связанными главным образом с малыми размерами молекул, с полярностью ее молекул и с их способностью образовывать друг с другом водородные связи. Вода как компонент биологических систем выполняет следующие важнейшие функции: 1- Вода-универсальный растворитель для полярных веществ, например солей, Сахаров, спиртов, кислот и др. Вещества, хорошо растворимые в воде, называются гидрофильными. 2- Неполярные вещества вода не растворяет и не смешивается с ними, поскольку не может образовывать с ними водородные связи. Нерастворимые в воде вещества называются гидрофобными. Гидрофобные молекулы или их части отталкиваются водой, а в ее присутствии притягиваются друг к другу. Такие взаимодействия играют важную роль в обеспечении стабильности мембран, а также многих белковых молекул, нуклеинов вых кислот и ряда субклеточных структур.3- Вода обладает высокой удельной теплоемкостью. 4- Вода характеризуется высокой теплотой парообразования, т. е. способностью молекул уносить с собой значительное количество тепла при одновременном охлаждении организма. 5- Для воды характерно исключительно высокое поверхностное натяжение. 6- Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма.7- У растений вода определяет тургор клеток, а у некоторых животных выполняет опорные функции, являясь гидростатическим скелетом (круглые и кольчатые черви, иглокожие).8- Вода - составная часть смазывающих жидкостей (синовиальной - в суставах позвоночных, плевральной - в плевральной полости, перикардиальной - в околосердечной сумке) и слизей (облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей). Она входит в состав слюны, желчи, слез, спермы и др.

Минеральные соли. В составе живых организмов современными методами химического анализа обнаружено 80 элементов периодической системы. По количественному составу их разделяют на три основные группы. Макроэлементы составляют основную массу органических и неорганических соединений, концентрация их колеблется от 60% до 0.001% массы тела (кислород, водород, углерод, азот, сера, магний, калий, натрий, железо и др.). Микроэлементы - преимущественно ионы тяжёлых металлов. Содержатся в организмах в количестве 0.001% - 0.000001% (марганец, бор, медь, молибден, цинк, йод, бром). Концентрация ультрамикроэлементов не превышает 0.000001%. Физиологическая роль их в организмах полностью ещё не выяснена. К этой группе относятся уран, радий, золото, ртуть, цезий, селен и много других редких элементов. Существенным является не только содержание, но и соотношение ионов в клетке. Разность между количеством катионов и анионов на поверхности и внутри клетки обеспечивает возникновение потенциала действия , что лежит в основе возникновения нервного и мышечного возбуждения.

Основную массу тканей живых организмов, населяющих Землю составляют органогенные элементы: кислород, углерод, водород и азот, из которых преимущественно построены органические соединения - белки, жиры, углеводы.

Клеткой называют элементарную единицу строения живых организмов. Все живые существа - будь то люди, животные, растения, грибы или бактерии - в своей основе имеют клетку. В чьем-то организме этих клеток много - сотни тысяч клеток составляют тело млекопитающих и рептилий, а в чьем-то мало - многие бактерии состоят из всего одной клетки. Но не так важно количество клеток, как их наличие.

Давно известно, что клетки обладают всеми свойствами живого: они дышат, питаются, размножаются, приспосабливаются к новым условиям, даже умирают. И, как и у всего живого, в составе клеток есть органические и неорганические вещества.

Намного больше, ведь - это и вода, и Разумеется, наибольшая часть отдела под названием "неорганические вещества клетки" отводится воде - она составляет 40-98% от всего объема клетки.

Вода в клетке выполняет множество важнейших функций: она обеспечивает упругость клетки, быстроту проходящих в ней химических реакций, перемещение поступивших веществ по клетке и их вывод. Кроме того, в воде растворяются многие вещества, она может участвовать в химических реакциях и именно на воде лежит ответственность за терморегуляцию всего организма, так как вода обладает неплохой теплопроводностью.

Помимо воды, в неорганические вещества клетки входят и многие минеральные вещества, делящиеся на макроэлементы и микроэлементы.

К макроэлементам относятся такие вещества, как железо, азот, калий, магний, натрий, сера, углерод, фосфор, кальций и многие другие.

Микроэлементы - это, в большинстве своем, тяжелые металлы, такие как бор, марганец, бром, медь, молибден, йод и цинк.

Также в организме есть и ультрамикроэлементы, среди которых золото, уран, ртуть, радий, селен и другие.

Все неорганические вещества клетки играют собственную, важную роль. Так, азот участвует в великом множестве соединений - как белковых, так и небелковых, способствует образованию витаминов, аминокислот, пигментов.

Кальций представляет собой антагонист калия, служит клеем для растительных клеток.

Железо участвует в процессе дыхания, входит в состав молекул гемоглобина.

Медь отвечает за образование клеток крови, здоровье сердца и хороший аппетит.

Бор отвечает за процесс роста, в особенности у растений.

Калий обеспечивает коллоидные свойства цитоплазмы, образование белков и нормальную работу сердца.

Натрий также обеспечивает правильный ритм сердечной деятельности.

Сера участвует в образовании некоторых аминокислот.

Фосфор участвует в образовании огромного количества незаменимых соединений, таких, как нуклеотиды, некоторые ферменты, АМФ, АТФ, АДФ.

И только роль ультрамикроэлементов пока абсолютно неизвестна.

Но одни только неорганические вещества клетки не смогли бы сделать ее полноценной и живой. Органические вещества важны не менее, чем они.

К относятся углеводы, липиды, ферменты, пигменты, витамины и гормоны.

Углеводы делятся на моносахариды, дисахариды, полисахариды и олигосахариды. Моно- ди- и полисахариды являются основным источником энергии для клетки и организма, а вот нерастворяющиеся в воде олигосахариды склеивают соединительную ткань и защищают клетки от неблагоприятного внешнего воздействия.

Липиды делятся на собственно жиры и липоиды - жироподобные вещества, образующие ориентированные молекулярные слои.

Ферменты являются катализаторами, ускоряющими биохимические процессы в организме. Кроме того, ферменты уменьшают количество потребляемой на придание реакционной способности молекуле энергии.

Витамины необходимы для регуляции окисляемости аминокислот и углеводов, а также для полноценного роста и развития.

Гормоны необходимы для регулирования жизнедеятельности организма.

В конце девятого века нашей эры арабский ученый Абу Бакр ар-Рази разделил все известные на тот момент вещества на 3 группы в зависимости от их происхождения: минеральные, животные и растительные. Классификация просуществовала почти 1000 лет. Только в 19 веке 3 группы превратились в 2: органические и неорганические вещества.

Неорганические вещества

Неорганические вещества бывают простыми и сложными. Простыми называют те вещества, в составе которых есть атомы всего одного химического элемента. Их делят на металлы и неметаллы.

Металлы – вещества пластичные, хорошо проводящие тепло и электрический ток. Почти все они серебристо-белые и обладают характерным металлическим блеском. Такие свойства – следствие особого строения. В металлической кристаллической решетке частицы металлов (их называют ион-атомами) соединены подвижными общими электронами.

Примеры металлов может назвать даже тот, кто далек от химии. Это железо, медь, цинк, хром и другие простые вещества, образованные атомами химических элементов, символы которых расположены в ПСХЭ Д.И. Менделеева под диагональю B – At и выше нее в главных подгруппах.

Неметаллы, как следует из их названия, не обладают свойствами металлов. Они хрупкие, электрический ток, за редкими исключениями, не проводят, не блестят (кроме йода и графита). Свойства их более многообразны по сравнению с металлами.

Причина таких различий также кроется в строении веществ. В кристаллических решетках атомного и молекулярного типов нет свободно передвигающихся электронов. Здесь они, объединяясь попарно, образуют ковалентные связи. Всем известные неметаллы – кислород, азот, сера, фосфор и другие. Элементы – неметаллы в ПСХЭ располагаются выше диагонали B-At

Сложные неорганические вещества – это:

  • кислоты, состоящие из атомов водорода и кислотных остатков (HNO3, H2SO4);
  • основания, образованные атомами металлов и гидроксо-группами (NaOH, Ba(OH)2);
  • соли, формулы которых начинаются с символов металлов, а заканчиваются кислотными остатками (BaSO4, NaNO3);
  • оксиды, образованные двумя элементами, причем один из них – О в степени окисления -2 (BaO, Na2O);
  • другие бинарные соединения (гидриды, нитриды, пероксиды и т.д.)

Всего неорганических веществ известно несколько сотен тысяч.

Органические вещества

Органические соединения отличаются от неорганических, прежде всего, своим составом. Если неорганические вещества могут быть образованы любыми элементами Периодической системы, то в состав органических должны непременно входить атомы C и H. Такие соединения называют углеводородами (CH4 – метан, C6H6 – бензол). Углеводородное сырье (нефть и газ) приносит человечеству огромную пользу. Однако и распри вызывает нешуточные.

Производные углеводородов содержат в своем составе еще и атомы O и N. Представители кислородсодержащих органических соединений – спирты и изомерные им простые эфиры (C2H5OH и CH3-O-CH3), альдегиды и их изомеры – кетоны (CH3CH2CHO и CH3COCH3), карбоновые кислоты и сложные эфиры (CH3-COOH и HCOOCH3). К последним принадлежат также жиры и воски. Углеводы – тоже кислородсодержащие соединения.

Почему же ученые объединили вещества растительные и животные в одну группу – органические соединения и в чем их отличие от неорганических? Одного четкого критерия, позволяющего разделить органические и неорганические вещества, нет. Рассмотрим ряд признаков, объединяющих органические соединения.

  1. Состав (построены из атомов C, H, O, N, реже P и S).
  2. Строение (связи С- Н и С – С обязательны, они образуют разной длины цепи и циклы);
  3. Свойства (все органические соединения горючи, образуют при горении СО2 и H2O).

Среди органических веществ много полимеров природного (белки, полисахариды, натуральный каучук и др.), искусственного (вискоза) и синтетического (пластмассы, синтетические каучуки, полиэстер и другие) происхождения. Они обладают большой молекулярной массой и более сложным, по сравнению с неорганическими веществами, строением.

Наконец, органических веществ насчитывают более 25 миллионов.

Это лишь поверхностный взгляд на органические и неорганические вещества. О каждой из этих групп написан не один десяток научных трудов, статей и учебников.

Неорганические соединения – видео

1 Органические и неорганические вещества

I. Неорганические соединения.

1.Вода, её свойства и значение для биологических процессов.

Вода - универсальный растворитель. Она имеет высокую теплоёмкость и одновременно высокую для жидкостей теплопроводность. Эти свойства делают воду идеальной жидкостью для подержания теплового равновесия организма.

Благодаря полярности своих молекул вода выступает в роли стабилизатора структуры.

Вода - источник кислорода и водорода, она является основной средой где протекают биохимические и химические реакции, важнейшим реагентом и продуктом биохимических реакций.

Для воды характерна полная прозрачность в видимом участке спектра, что имеет значение для процесса фотосинтеза, транспирации.

Вода практически не сжимается, что очень важно для придания формы органам, создания тургора и обеспечения определённого положения органов и частей организма в пространстве.

Благодаря воде возможно осуществление осмотических реакций в живых клетках.

Вода - основное средство передвижения веществ в организме (кровообращение, восходящий и нисходящий токи растворов по телу растения и т.д.).

2. Минеральные вещества.

В составе живых организмов современными методами химического анализа обнаружено 80 элементов периодической системы. По количественному составу их разделяют на три основные группы.

Макроэлементы составляют основную массу органических и неорганических соединений, концентрация их колеблется от 60% до 0.001% массы тела (кислород, водород, углерод, азот, сера, магний, калий, натрий, железо и др.).

Микроэлементы - преимущественно ионы тяжёлых металлов. Содержатся в организмах в количестве 0.001% - 0.000001% (марганец, бор, медь, молибден, цинк, йод, бром).

Концентрация ультрамикроэлементов не превышает 0.000001%. Физиологическая роль их в организмах полностью ещё не выяснена. К этой группе относятся уран, радий, золото, ртуть, цезий, селен и много других редких элементов.

Основную массу тканей живых организмов, населяющих Землю составляют органогенные элементы: кислород, углерод, водород и азот, из которых преимущественно построены органические соединения - белки, жиры, углеводы.

II. Роль и функция отдельных элементов.

Азот у автотрофных растений является исходным продуктом азотного и белкового обмена. Атомы азоты входят в состав многих других небелковых, однако важнейших соединений: пигментов (хлорофилл, гемоглобин), нуклеиновых кислот, витаминов.

Фосфор входит в состав многих жизненно важных соединений. Фосфор входит в состав АМФ, АДФ, АТФ, нуклеотидов, фосфосфорилированных сахаридов, некоторых ферментов. Многие организмы содержат фосфор в минеральной форме (растворимые фосфаты клеточного сока, фосфаты костной ткани).

После отмирания организмов фосфорные соединения минерализуются. Благодаря корневым выделениям, деятельности почвенных бактерий осуществляется растворение фосфатов, что делает возможным усвоение фосфора растительными, а потом и животными организмами.

Сера участвует в построении серусодержащих аминокислот (цистина, цистеина), входит в состав витамина B1 и некоторых ферментов. Особенно большое значение имеет сера и её соединения для хемосинтезирующих бактерий. Соединения серы образуются в печени как продукты обеззараживания ядовитых веществ.

Калий содержится в клетках только в виде ионов. Благодаря калию цитоплазма имеет определённые коллоидные свойства; калий активирует ферменты белкового синтеза обусловливает нормальный ритм сердечной деятельности, участвует в генерации биоэлектрических потенциалов, в процессах фотосинтеза.

Натрий (содержится в ионной форме) составляет значительную часть минеральных веществ крови и благодаря этому играет важную роль в регуляции водного обмена организма. Ионы натрия способствуют поляризации клеточной мембраны; нормальный ритм сердечной деятельности зависит от наличия в питательной среде в необходимом количестве солей натрия, калия, а также кальция.

Кальций в ионном состоянии является антагонистом калия. Он входит в состав мембранных структур, в виде солей пектиновых веществ склеивает растительные клетки. В растительных клетках часто содержится в виде простых, игловидных или сросшихся кристаллов оксалата кальция.

Магний содержится в клетках в определённом соотношении с кальцием. Он входит в состав молекулы хлорофилла, активирует энергетический обмен и синтез ДНК.

Железо является составной частью молекулы гемоглобина. Оно участвует в биосинтезе хлорофилла, поэтому при недостатке железа в почве у растений развивается хлороз. Основная роль железа - участие в процессах дыхания, фотосинтеза путём перенесения электронов в составе окислительных ферментов - каталазы, ферредоксина. Определённый запас железа в организме животных и человека сохраняется в желесодержащем белке ферритине, содержащемся в печени, селезёнке.

Медь встречается в организмах животных и растений, где она играет важную роль. Медь входит в состав некоторых ферментов(оксидаз). Установлено значение меди для процессов кроветворения, синтеза гемоглобина и цитохромов.

Ежесуточно в организм человека с пищей поступает 2 мг меди. У растений медь входит в состав многих ферментов, которые участвуют в темновых реакциях фотосинтеза и других биосинтезах. У больных недостатком меди животных наблюдается анемия, потеря аппетита, заболевания сердца.

Марганец - микроэлемент, при недостаточном количестве которого у растений возникает хлороз. Большая роль принадлежит марганцу и в процессах восстановления нитратов в растениях.

Цинк входит в состав некоторых ферментов, активизирующих расщепление угольной кислоты.

Бор влияет на ростовые процессы, особенно растительных организмов. При отсутствии в почве этого микроэлемента у растений отмирают проводящие ткани, цветки и завязь.

В последнее время микроэлементы достаточно широко применяются в растениеводстве (предпосевная обработка семян), в животноводстве (микроэлементные добавки к корму).

Другие неорганические компоненты клетки чаще всего находятся в виде солей, диссоциированных в растворе на ионы, или в нерастворённом состоянии (соли фосфора костной ткани, известковые или кремниевые панцири губок, кораллов, диатомовых водорослей и др.).

III. Органические соединения.

Углеводы (сахариды). Молекулы этих веществ построены всего из трёх элементов - углерода, кислорода и водорода. Углероды являются основным источником энергии для живых организмов. Кроме того, они обеспечивают организмы соединениями, которые используются в дальнейшем для синтеза других соединений.

Наиболее известными и распространёнными углеводами являются растворённые в воде моно- и дисахариды. Они кристаллизуются, сладкие на вкус.

Моносахариды (монозы) - соединения, которые не могут гидролизоваться. Сахариды могут полимеризоваться, образуя более высокомолекулярные соединения - ди-, три- , и полисахариды.

Олигосахариды. Молекулы этих соединений построены из 2 - 4 молекул моносахаридов. Эти соединения также могут кристаллизоваться, легко растворимы в воде, сладкие на вкус и имеют постоянную молекулярную массу. Примером олигосахаридов могут быть дисахариды сахароза, мальтоза, лактоза, тетрасахарид стахиоза и др.

Полисахариды (полиозы) - нерастворимые в воде соединения (образуют коллоидный раствор), не имеющие сладкого вкуса, Как и предыдущая группа углеводов способны гидролизоваться (арабаны, ксиланы, крахмал, гликоген). Основная функция этих соединений - связывание, склеивание клеток соединительной ткани, защита клеток от неблагоприятных факторов.

Липиды - группа соединений, которые содержатся во всех живых клетках, они нерастворимы в воде. Структурными единицами молекул липидов могут быть либо простые углеводородные цепи, либо остатки сложных циклических молекул.

В зависимости от химической природы липиды разделяют на жиры и липоиды.

Жиры (триглицериды, нейтральные жиры) являются основной группой липидов. Они представляют собой сложные эфиры трёхатомного спирта глицерина и жирных кислот или смесь свободных жирных кислот и триглицеридов.

Встречаются в живых клетках и свободные жирные кислоты: пальмитиновая, стеариновая, рициновая.

Липоиды - жироподобные вещества. Имеют большое значение, так как благодаря своему строению образуют чётко ориентированные молекулярные слои, а упорядочённое расположение гидрофильных и гидрофобных концов молекул имеет первоочередное значение для формирования мембранных структур с избирательной проницаемостью.

Ферменты. Это биологические катализаторы белковой природы, способные ускорять биохимические реакции. Ферменты не разрушаются в процессе биохимических превращений, поэтому сравнительно небольшое их количества катализируют реакции большого количества вещества. Характерным отличием ферментов от химических катализаторов является их способность ускорять реакции при обычных условиях.

По химической природе ферменты делятся на две группы - однокомпонентные (состоящие только из белка, их активность обусловлена активным центром - специфической группы аминокислот в белковой молекуле (пепсин, трипсин)) и двухкомпонентные (состоящие из белка (апофермента - носителя белка) и белкового компонента (коферментом), причём химическая природа коферментов бывает разной, так как они могут состоять из органических (многие витамины, НАД, НАДФ) или неорганических (атомы металлов: железа, магния, цинка)).

Функция ферментов заключается в снижении энергии активации, т.е. в снижении уровня энергии, необходимой для придания реакционной способности молекуле.

Современная классификация ферментов основывается на типах катализируемых ими химических реакций. Ферменты гидролазы ускоряют реакцию расщепления сложных соединений на мономеры (амилаза (гидролизует крахмал), целлюлаза (разлагает целлюлозу до моносахаридов), протеаза (гидролизует белки до аминокислот)).

Ферменты оксидоредуктазы катализируют окислительно-восстановительные реакции.

Трансферазы переносят альдегидные, кетонные и азотистые группы от одной молекулы к другой.

Лиазы отщепляют отдельные радикалы с образованием двойных связей или катализируют присоединение групп к двойным связям.

Изомеразы осуществляют изомеризацию.

Лигазы катализируют реакции соединения двух молекул, используя энергию АТФ или другого триофасфата.

Пигменты - высокомолекулярные природные окрашенные соединения. Из нескольких сотен соединений этого типа важнейшими являются металлопорфириновые и флавиновые пигменты.

Металлопорфирин, в состав которого входит атом магния, образует основание молекулы зелёных растительных пигментов - хлорофиллов. Если на месте магния стоит атом железа, то такой металлопорфирин называют гемом.

В состав гемоглобина эритроцитов крови человека, всех других позвоночных и некоторых беспозвоночных входит окисное железо, которое и придаёт крови красный цвет. Гемеритрин придаёт крови розовый цвет (некоторые многощетинковые черви). Хлорокруорин окрашивает кровь, тканевую жидкость в зелёный цвет.

Наиболее распространенными дыхательными пигментами крови являются гемоглобин и гемоциан (дыхательный пигмент высших ракообразных, паукообразных, некоторых моллюсков спрутов).

К хромопротеидам относятся также цитохромы, каталаза, пероксидаза, миоглобин (содержится в мышцах и создаёт запас кислорода, что позволяет морским млекопитающим длительное время пребывать под водой).