История возникновения теории вероятностей. Применение теории вероятностей в жизни Применение математического анализа в теории вероятности

Вебинар о том, как понять теорию вероятности и как начать использовать статистику в бизнесе . Умея работать с такой информацией, можно сделать свой бизнес.

Вот пример задачи, которые вы будете решать не задумываясь. В мае 2015 года Россия запустила космический корабль “Прогресс” и потеряла над ним управление. Эта груда металла под действием притяжения Земли должна была грохнуться на нашу планету.

Внимание, вопрос: какова была вероятность, что Прогресс упал бы на сушу, а не в океан и надо ли нам было беспокоиться.

Ответ очень простой - шансы падения на сушу были 3 к 7.

Меня зовут Скакунов Александр, я не учёный и не профессор. Мне просто стало интересно, зачем нужна теория вероятностей и статистика, зачем мы проходили их в ВУЗе? Поэтому за год я прочёл больше двадцати книг по этой теме - от “Чёрного лебедя” до “Удовольствия от Х”. Я даже нанял себе 2 репетиторов.

В этом вебинаре я поделюсь с вами своими находками. Например, вы узнаете, как статистика помогла совершить экономические чудо в Японии и как это отражено в сценарии фильма “Назад в будущее”.

Сейчас я покажу вам немножко уличной магии. Я не знаю, сколько вас запишется на этот вебинар, но явится на него в итоге только 45%.

Будет интересно. Записывайтесь!

3 этапа постижения теории вероятностей

Есть 3 этапа, которые проходит любой, кто знакомится с теорией вероятности.

Этап 1. “Я буду выигрывать в казино!”. Человек полагает, что сможет предсказывать исходы случайных событий.

Этап 2. “Я никогда не выиграю в казино!..” Человек разочаровывается и полагает, что ничего предсказать нельзя.

И этап 3. “Дай-ка попробую вне казино!”. Человек понимает, что в кажущемся хаосе мира случайностей можно найти закономерности, позволяющие неплохо ориентироваться в окружающем мире.

Наша задача - как раз выйти на 3 этап, чтобы вы научились применять основные положения теории вероятности и статистики на пользу себе и своему бизнесу.

Итак, ответ на вопрос "зачем нужна теория вероятностей" вы узнаете в этом вебинаре.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Возникновение и развитие теории вероятностей и ее приложений. Решение классических парадоксов игры в кости и "азартных игр". Парадокс закона больших чисел Бернулли и Бертрана, дня рождения и раздачи подарков. Изучение парадоксов из книги Г. Секея.

    контрольная работа , добавлен 29.05.2016

    Сущность и предмет теории вероятностей, отражающей закономерности, присущие случайным явлениям массового характера. Изучение ею закономерностей массовых однородных случайных явлений. Описание наиболее популярных в теории вероятностей экспериментов.

    презентация , добавлен 17.08.2015

    Сущность понятия "комбинаторика". Историческая справка из истории развития науки. Правило суммы и произведения, размещения и перестановки. Общий вид формулы для вычисления числа сочетаний с повторениями. Пример решения задач по теории вероятностей.

    контрольная работа , добавлен 30.01.2014

    Теория вероятности как математическая наука, изучающая закономерность в массовых однородных случаях, явлениях и процессах, предмет, основные понятия и элементарные события. Определение вероятности события. Анализ основных теорем теории вероятностей.

    шпаргалка , добавлен 24.12.2010

    Возникновение теории вероятностей как науки, вклад зарубежных ученых и Петербургской математической школы в ее развитие. Понятие статистической вероятности события, вычисление наивероятнейшего числа появлений события. Сущность локальной теоремы Лапласа.

    презентация , добавлен 19.07.2015

    Принципы решения задач по основным разделам теории вероятностей: случайные события и их допустимость, непроизвольные величины, распределения и числовые характеристики градировки, основные предельные теоремы для сумм независимых вероятностных величин.

    контрольная работа , добавлен 03.12.2010

    Преимущество использования формулы Бернулли, ее место в теории вероятностей и применение в независимых испытаниях. Исторический очерк жизни и деятельности швейцарского математика Якоба Бернулли, его достижения в области дифференциального исчисления.

    презентация , добавлен 11.12.2012

    Исследования Дж. Кардано и Н. Тарталья в области решения первичных задач теории вероятностей. Вклад Паскаля и Ферма в развитие теории вероятностей. Работа Х. Гюйгенса. Первые исследования по демографии. Формирование понятия геометрической вероятности.

    курсовая работа , добавлен 24.11.2010

Неволина Екатерина Николаевна Екатеринбург УрГЭУ Руководитель – Кныш А. А. Практическое применение теории вероятностей. Актуальность. Теория вероятностей является одним из разделов математики, изучающим случайные события, случайные величины, их свойства и операции над ними. Методы теории вероятностей все шире находят свое применение в различных областях науки и техники, а также в обычной жизни. Особенность данного раздела науки заключается в рассмотрении таких явлений, в которых присутствует неопределенность. В статье мне бы хотелось рассмотреть примеры некоторых задач, демонстрирующих практическое применение теории вероятностей. Задачи с экономическим содержанием. 1. Одна из фирм собирается заключить контракт на поставку товара с сетью магазинов. При условии, что конкурент фирмы не станет одновременно претендовать на заключение контракта, вероятность заключения контракта оценивается в 0,85, В противном случае вероятность получения контракта составляет 0,6. По оценкам экспертов компании вероятность того, что конкурент выдвинет свои предложения по заключению контракта, равна 0,55. Чему равна вероятность заключения контракта для этой фирмы? . Данная задача решается с помощью формулы полной вероятности. 2. Экономист-аналитик условно подразделяет экономическую ситуацию в стране на «хорошую», «посредственную» и «плохую» и оценивает их вероятности для данного момента времени в 0,2; 0,7 и 0,15 соответственно. Некоторый индекс экономического состояния возрастает с вероятностью 0,65, когда ситуация «хорошая»; с вероятностью 0,35, когда ситуация посредственная, и с вероятностью 0,1, когда ситуация «плохая». Пусть в настоящий момент индекс экономического состояния возрос. Чему равна вероятность того, что экономика страны на подъеме? . Задача решается с помощью формулы Байеса. 3. Банк выдаёт 9 кредитов. Вероятность невозврата кредита равна 0,2 для каждого заёмщика. Какова вероятность того, что трое заёмщиков не выплатят кредит? Задача решается с помощью формулы Бернулли. 5. Деталь считается годной при отклонении Х линейного размера в абсолютном выражении меньше 1 мм. Отклонение Х является величиной, распределенной по нормальному закону, со среднем квадратическим отклонением   0.35 . Найти количество бракованных деталей в одной партии произведенных деталей (размер партии 1000 шт.), стоимость потерь от брака при себестоимости партии 15 млн. руб., доход от реализации оставшихся годных деталей и экономические потери при рыночной цене 19 000 руб. за единицу продукции . Рассмотрим решение данной задачи. Т.к. Х – отклонение линейного размера в абсолютном выражении, то математическое ожидание М(Х)=а=0. Подставив в формулу  P  X     2      значения    0.35 и   1, получим P X  1  0,9956. Таким образом, в партии из 1000 деталей годными будут 995 деталей. При себестоимости партии 15 млн. руб. себестоимость каждой детали составит в среднем 15 000 руб. Стоимость потерь от брака составят 75000 рублей. Доход от реализации годных деталей по рыночной цене составит 995∙19000 =18,905 млн. руб. В связи с невозможностью реализовать часть продукции экономические потери составят 5∙19000=95000 руб. Методы теории вероятностей также используются в ставках на спорт. С помощью теории вероятностей стало возможным предугадывать и оценивать исходы различных матчей, а также выявлять продуктивность отдельно взятого игрока. Так, например, если мы рассматриваем баскетбол, то в качестве продуктивности игрока можно рассматривать вероятность его попадания в кольцо с различных точек. Приведем примеры задач. 1. На соревнованиях по баскетболу центровой игрок команды «N» бросает мяч в кольцо. За каждый забитый мяч команда получает 2 очка. Найти вероятность того, что за данный бросок центровым команда не получит ни одного очка (0 очков полагается лишь за промах). 2. Две равносильные баскетбольные команды играют в баскетбол. Что вероятнее: вести счет одну четверть из двух или две четверти из четырех (равный счет во внимание не принимается)? Данная задача решается с помощью формулы Бернулли. Итак, нахождение закономерностей в случайных явлениях - это задача теорий вероятности. Теория вероятности - это инструмент для изучения не видимых и многозначных взаимосвязей разных явлений во многочисленных областях науки, техники и экономики. Теория вероятности дает возможность правильно посчитать колебания спроса, предложения, цен и других экономических показателей. Теория вероятности есть часть базовой науки как статистика и прикладная информатика. Так как без теории вероятностей не может работать не одна прикладная программа, и компьютер в целом. И в теории игр она тоже является основной . Список использованных источников: 1. Вентцель Е. С. Теория вероятностей [Электрон. ресурс] : Учеб. пособие. – Москва. – Высшая школа, 1999. – 576 c. – Режим доступа: http://sernam.ru/book_tp.php 2. Методические указания для студентов по проведению практических работ по дисциплине «Математика» [Электрон. ресурс]. – Мончегорск, 2013. – Режим доступа: http://www.studfiles.ru/preview/3829108/ 3. Хуснутдинов, Р. Ш. Математика для экономистов в примерах и задачах [Электрон. ресурс] : учеб. пособие / Р. Ш. Хуснутдинов, В. А. Жихарев. – Санкт-Петербург: Лань, 2012. - 656 с. - Режим доступа: https://e.lanbook.com/book/4233

Либерт Елена

Азарт и жажда разбогатеть дали толчок возникновению новой чрезвычайно существенной математической дисциплины: теории вероятностей. В разработке ее основ принимали участие математики такого масштаба, как Паскаль и Ферма, Гюйгенс.

Скачать:

Предварительный просмотр:

МБОУ СШ №8 г. Ярцево Смоленской области

Проект по математике:

«История возникновения теории вероятностей»

Подготовила: ученица 11 класса

средней школы №8 Либерт Елена

Руководитель: учитель математики

Борисенкова Ольга Владимировна

Г. Ярцево, 2015г.

История возникновения теории вероятностей…………………………………………………………..…...3

Средневековая Европа и начало Нового времени……………………….4

XVII век: Паскаль, Ферма, Гюйгенс…..………………………………….5

XVIII век……..…………………………………………………………….7

XIX век. Общие тенденции и критика……………………….…………..7

Применение теории вероятности в XIX-XX веках……………….…..…8

  1. Астрономия………………………………………………………….8
  2. Физика………………………….……………………………………9
  3. Биометрия……………...……………………………………………9
  4. Сельское хозяйство………………………..………………………..9
  5. Промышленность …………………………………………………..10
  6. Медицина…………………………………………………………....10
  7. Биоинформатика……………...…………………………………….10
  8. Экономика и банковское дело…….……………………………….11

История возникновения теории вероятностей

Французский дворянин, некий господин де Мере, был азартным игроком в кости и страстно хотел разбогатеть. Он затратил много времени, чтобы открыть тайну игры в кости. Он выдумывал различные варианты игры, предполагая, что таким образом приобретет крупное состояние. Так, например, он предлагал бросать одну кость по очереди 4 раза и убеждал партнера, что по крайней мере один раз выпадет при этом шестерка. Если за 4 броска шестерка не выходила, то выигрывал противник.

В те времена еще не существовала отрасль математики, которую сегодня мы называем теорией вероятностей, а поэтому, чтобы убедиться, верны ли его предположения, господин Мере обратился к своему знакомому, известному математику и философу Б. Паскалю с просьбой, чтобы он изучил два знаменитых вопроса, первый из которых он попытался решить сам. Вопросы были такие:

Сколько раз надо бросать две игральные кости, чтобы случаев выпадения сразу двух шестерок было больше половины от общего числа бросаний?

Как справедливо разделить поставленные на кон двумя игроками деньги, если они по каким-то причинам прекратили игру преждевременно?

Паскаль не только сам заинтересовался этим, но и написал письмо известному математику П. Ферма, чем спровоцировал его заняться общими законами игры в кости и вероятностью выигрыша.

Таким образом, азарт и жажда разбогатеть дали толчок возникновению новой чрезвычайно существенной математической дисциплины: теории вероятностей. В разработке ее основ принимали участие математики такого масштаба, как Паскаль и Ферма, Гюйгенс (1629-1695), который написал тракта «О расчетах при азартных играх», Яков Бернулли (1654-1705), Муавр (1667-1754), Лаплас (1749- 1827), Гаусс (1777-1855) и Пуассон (1781-1840). В наше время теория вероятности используется почти во всех отраслях знаний: в статистике, синоптике (прогноз погоды), биологии, экономике, технологии, строительстве и т. д.

Средневековая Европа и начало Нового времени

Первые задачи вероятностного характера возникли в различных азартных играх - костях, картах и др. Французский каноник XIII века Ришар де Фурниваль правильно подсчитал все возможные суммы очков после броска трёх костей и указал число способов, которыми может получиться каждая из этих сумм. Это число способов можно рассматривать как первую числовую меру ожидаемости события, аналогичную вероятности. До Фурниваля, а иногда и после него, эту меру часто подсчитывали неверно, считая, например, что суммы 3 и 4 очка равновероятны, так как оба могут получиться «только одним способом»: по результатам броска «три единицы» и «двойка с двумя единицами» соответственно. При этом не учитывалось, что три единицы в самом деле получаются только одним способом: ~1+1+1, а двойка с двумя единицами - тремя: ~1+1+2;\;1+2+1;\;2+1+1, так что эти события не равновероятны. Аналогичные ошибки неоднократно встречались и в дальнейшей истории науки.

В обширной математической энциклопедии «Сумма арифметики, геометрии, отношений и пропорций» итальянца Луки Пачоли (1494) содержатся оригинальные задачи на тему: как разделить ставку между двумя игроками, если серия игр прервана досрочно. Пример подобной задачи: игра идёт до 60 очков, победитель получает всю ставку в 22 дуката, в ходе игры первый игрок набрал 50 очков, второй - 30, и тут игру пришлось прекратить; требуется справедливо разделить исходную ставку. Решение зависит от того, что понимать под «справедливым» разделом; сам Пачоли предложил делить пропорционально набранным очкам (55/4 и 33/4 дуката); позднее его решение было признано ошибочным.

Распределение суммы очков после бросания двух костей

Крупный алгебраист XVI века ДжероламоКардано посвятил анализу игры содержательную монографию «Книга об игре в кости» (1526 год, опубликована посмертно). Кардано провёл полный и безошибочный комбинаторный анализ для значений суммы очков и указал для разных событий ожидаемое значение доли «благоприятных» событий: например, при бросании трёх костей доля случаев, когда значения всех 3 костей совпадают, равна 6/216 или 1/36. Кардано сделал проницательное замечание: реальное количество исследуемых событий может при небольшом числе игр сильно отличаться от теоретического, но чем больше игр в серии, тем доля этого различия меньше. По существу, Кардано близко подошёл к понятию вероятности:

Итак, имеется одно общее правило для расчёта: необходимо учесть общее число возможных выпадений и число способов, которыми могут появиться данные выпадения, а затем найти отношение последнего числа к числу оставшихся возможных выпадений.

Другой итальянский алгебраист, Никколо Тарталья, раскритиковал подход Пачоли к решению задачи о разделе ставки: ведь если один из игроков ещё не успел набрать ни одного очка, то алгоритм Пачоли отдаёт всю ставку его сопернику, но это трудно назвать справедливым, поскольку некоторые шансы на выигрыш у отстающего всё же имеются. Кардано и Тарталья предложили свои (различные) способы раздела, но впоследствии и эти способы были признаны неудачными.

Исследованием данной темы занимался и Галилео Галилей, написавший трактат «О выходе очков при игре в кости» (1718 год, опубликован посмертно). Изложение теории игры у Галилея отличается исчерпывающей полнотой и ясностью. В своей главной книге «Диалог о двух главнейших системах мира, птоломеевой и коперниковой» Галилей также указал на возможность оценки погрешности астрономических и иных измерений, причём заявил, что малые ошибки измерения вероятнее, чем большие, отклонения в обе стороны равновероятны, а средний результат должен быть близок к истинному значению измеряемой величины. Эти качественные рассуждения стали первым в истории предсказанием нормального распределения ошибок.

XVII век: Паскаль, Ферма, Гюйгенс

В XVII веке начало формироваться отчётливое представление о проблематике теории вероятностей и появились первые математические (комбинаторные) методы решения вероятностных задач. Основателями математической теории вероятностей стали Блез Паскаль и Пьер Ферма.

Перед этим математик-любитель шевалье де Мере обратился к Паскалю по поводу так называемой «задачи об очках»: сколько раз нужно бросать две кости, чтобы ставить на одновременное выпадение хотя бы раз двух шестёрок было выгодно? Паскаль и Ферма вступили в переписку друг с другом по поводу данной задачи и родственных вопросов (1654). В рамках этой переписки учёные обсудили ряд проблем, связанных с вероятностными расчётами; в частности, рассматривалась старая задача о разделе ставки, и оба учёных пришли к решению, что надо разделить ставку соответственно остающимся шансам на выигрыш. Паскаль указал де Мере на ошибку, допущенную им при решении «задачи об очках»: в то время как де Мере неверно определил равновероятные события, получив ответ: 24 броска, Паскаль дал правильный ответ: 25 бросков.

Паскаль в своих трудах далеко продвинул применение комбинаторных методов, которые систематизировал в своей книге «Трактат об арифметическом треугольнике» (1665). Опираясь на вероятностный подход, Паскаль даже доказывал (в посмертно опубликованных заметках), что быть верующим выгоднее, чем атеистом.

Гюйгенс, вначале использовал термин «стоимость», а термин «ожидание» появился впервые при переводе трактата Гюйгенса Ван Схоутеном на латинский язык и стал общепринятым в науке.

В книге большое число задач, некоторые с решениями, другие «для самостоятельного решения». Из последних особый интерес и оживлённое обсуждение вызвала «задача о разорении игрока». В несколько обобщённом виде она формулируется так: у игроков A и B есть a и b монет соответственно, в каждой игре выигрывается одна монета, вероятность выигрыша A в каждой игре равна p, требуется найти вероятность полного его разорения. Полное общее решение «задачи о разорении» дал Абрахам де Муавр полвека спустя (1711). В наши дни вероятностная схема «задачи о разорении» используется при решении многих задач типа «случайное блуждание».

Гюйгенс проанализировал и задачу о разделе ставки, дав её окончательное решение: ставку надо разделить пропорционально вероятностям выигрыша при продолжении игры. Он также впервые применил вероятностные методы к демографической статистике и показал, как рассчитать среднюю продолжительность жизни.

К этому же периоду относятся публикации английских статистиков Джона Граунта (1662) и Уильяма Петти (1676, 1683). Обработав данные более чем за столетие, они показали, что многие демографические характеристики лондонского населения, несмотря на случайные колебания, имеют достаточно устойчивый характер - например, соотношение числа новорождённых мальчиков и девочек редко отклоняется от пропорции 14 к 13, невелики колебания и процента смертности от конкретных случайных причин. Эти данные подготовили научную общественность к восприятию новых идей.

Граунт также впервые составил таблицы смертности - таблицы вероятности смерти как функции возраста. Вопросами теории вероятностей и её применения к демографической статистике занялись также Иоганн Худде и Ян де Витт в Нидерландах, которые в 1671 году также составили таблицы смертности и использовали их для вычисления размеров пожизненной ренты. Более подробно данный круг вопросов был изложен в 1693 году Эдмундом Галлеем.

XVIII век

На книгу Гюйгенса опирались появившиеся в начале XVIII века трактаты Пьера де Монмора «Опыт исследования азартных игр» (опубликован в 1708 и переиздан с дополнениями в 1713 году) и Якоба Бернулли «Искусство предположений» (опубликован уже после смерти учёного, в том же 1713 году). Последний имел для теории вероятностей особенно большое значение.

XIX век

Общие тенденции и критика

В XIX веке число работ по теории вероятностей продолжало расти, были даже компрометирующие науку попытки распространить её методы далеко за разумные пределы - например, на область морали, психологии, правоприменения и даже богословия. В частности, валлийский философ Ричард Прайс, а следом за ним и Лаплас, считали возможным рассчитать по формулам Байеса вероятность предстоящего восхода Солнца, Пуассон пытался провести вероятностный анализ справедливости судебных приговоров и достоверности показаний свидетелей. Философ Дж. С. Милль в 1843 году, указав на подобные спекулятивные применения, назвал исчисление вероятностей «позором математики». Эта и другие оценки свидетельствовали о недостаточной строгости обоснования теории вероятностей.

Математический аппарат теории вероятностей тем временем продолжал совершенствоваться. Основной сферой её применения в тот период была математическая обработка результатов наблюдений, содержащих случайные погрешности, а также расчёты рисков в страховом деле и других статистических параметров. Среди главных прикладных задач теории вероятностей и математической статистики XIX века можно назвать следующие:

найти вероятность того, что сумма независимых случайных величин с одинаковым (известным) законом распределения находится в заданных пределах. Особую важность эта проблема представляла для теории ошибок измерения, в первую очередь для оценки погрешности наблюдений;

установление статистической значимости различия случайных значений или серий таких значений. Пример: сравнение результатов применения нового и старого видов лекарств для принятия решения о том, действительно ли новое лекарство лучше;

исследование влияния заданного фактора на случайную величину (факторный анализ).

Уже к середине XIX века формируется вероятностная теория артиллерийской стрельбы. В большинстве крупных стран Европы были созданы национальные статистические организации. В конце века область применения вероятностных методов начала успешно распространяться на физику, биологию, экономику, социологию.

Применение теории вероятности в XIX-XX веках.

В 19 и 20 столетиях теория вероятностей проникает сначала в науку (астрономию, физику, биологию), потом в практику (сельское хозяйство, промышленность, медицину), и наконец, после изобретения компьютеров, в повседневную жизнь любого человека, пользующегося современными средствами получения и передачи информации. Проследим применение в различных областях.

1.Астрономия.

Именно для использования в астрономии был разработан знаменитый “метод наименьших квадратов” (Лежандр 1805, Гаусс 1815). Главной задачей, для решения которой он был первоначально использован, стал расчет орбит комет, который приходилось производить по малому числу наблюдений. Ясно, что надежное определение типа орбиты (эллипс или гипербола) и точный расчет ее параметров оказывается трудным, так как орбита наблюдается лишь на небольшом участке. Метод оказался эффективным, универсальным, и вызвал бурные споры о приоритете. Его стали использовать в геодезии и картографии. Сейчас, когда искусство ручных расчетов утрачено, трудно представить, что при составлении карт мирового океана в 1880-х годах в Англии методом наименьших квадратов была численно решена система, состоящая из примерно 6000 уравнений с несколькими сотнями неизвестных.

2.Физика.

Во второй половине 19 века была в работах Максвелла, Больцмана и Гиббса была развита статистическая механика, которая описывала состояние разряженных систем, содержащих огромное число частиц (порядка числа Авогадро). Если раньше понятие распределения случайной величины было преимущественно связано с распределением ошибок измерения, то теперь распределенными оказались самые разные величины – скорости, энергии, длины свободного пробега.

3.Биометрия.

В 1870-1900 годах бельгиец Кетле и англичане Френсис Гальтон и Карл Пирсон основали новое научное направление – биометрию, в которой впервые стала систематически и количественно изучаться неопределенная изменчивость живых организмов и наследование количественных признаков. В научный оборот были введены новые понятия – регрессии и корреляции.

Итак, вплоть до начала 20 века основные приложения теории вероятности были связаны с научными исследованиями. Внедрение в практику – сельское хозяйство, промышленность, медицину произошло в 20 веке.

4.Сельское хозяйство.

В начале 20 века в Англии была поставлена задача количественного сравнения эффективности различных методов ведения сельского хозяйства. Для решения этой задачи была развита теория планирования экспериментов, дисперсионный анализ. Основная заслуга в развитии этого уже чисто практического использования статистики принадлежит сэру Рональду Фишеру, астроному по образованию, а в дальнейшем фермеру, статистику, генетику, президенту английского Королевского общества. Современная математическая статистика, пригодная для широкого применения в практике, была развита в Англии (Карл Пирсон, Стьюдент, Фишер). Стьюдент впервые решил задачу оценки неизвестного параметра распределения без использования байесовского подхода.

5.Промышленность.

Введение методов статистического контроля на производстве (контрольные карты Шухарта). Сокращение необходимого количества испытаний качества продукции. Математические методы оказываются уже настолько важными, что их стали засекречивать. Так книга с описанием новой методики, позволявшей сократить количество испытаний (“Последовательный анализ” Вальда), была издана только после окончания второй мировой войны в 1947 году.

6.Медицина.

Широкое применение статистических методов в медицине началось сравнительно недавно (вторая половина 20 века). Развитие эффективных методов лечения (антибиотики, инсулин, эффективная анестезия, искусственное кровообращение) потребовало достоверных методов оценки их эффективности. Возникло новое понятие “Доказательная медицина”. Начал развиваться более формальный, количественный подход к терапии многих заболевании – введение протоколов, guidelines.

С середины 1980-х годов возник новый и важнейший фактор, революционизировавший все приложения теории вероятностей – возможность широкого использования быстрых и доступных компьютеров. Почувствовать всю громадность произошедшего переворота можно, если учесть, что один современный персональный компьютер превосходит по быстродействию и памяти все компьютеры СССР и США, имевшиеся к 1968 году, времени, когда уже были осуществлены проекты, связанные со строительством атомных электростанций, полетами на Луну, созданием термоядерной бомбы. Сейчас методом прямого экспериментирования можно получать результаты, которые ранее были недоступны – thinkingofunthinkable.

7.Биоинформатика.

Начиная с 1980-х годов количество известных последовательностей белков и нуклеиновых кислот стремительно возрастает. Объем накопленной информации таков, что только компьютерный анализ этих данных может решать задачи по извлечению информации.

8.Экономика и банковское дело.

Широкое применение имеет теория риска. Теория риска есть теория принятия решений в условиях вероятностной неопределенности. С математической точки зрения она является разделом теории вероятностей, а приложения теории риска практически безграничны. Наиболее продвинута финансовая область приложений: банковское дело и страхование, управление рыночными и кредитными рисками, инвестициями, бизнес-рисками, телекоммуникациям. Развиваются и нефинансовые приложения, связанные с угрозами здоровью, окружающей среде, рисками аварий и экологических катастроф, и другими направлениями.

Неволина Екатерина Николаевна Екатеринбург УрГЭУ Руководитель – Кныш А. А. Практическое применение теории вероятностей. Актуальность. Теория вероятностей является одним из разделов математики, изучающим случайные события, случайные величины, их свойства и операции над ними. Методы теории вероятностей все шире находят свое применение в различных областях науки и техники, а также в обычной жизни. Особенность данного раздела науки заключается в рассмотрении таких явлений, в которых присутствует неопределенность. В статье мне бы хотелось рассмотреть примеры некоторых задач, демонстрирующих практическое применение теории вероятностей. Задачи с экономическим содержанием. 1. Одна из фирм собирается заключить контракт на поставку товара с сетью магазинов. При условии, что конкурент фирмы не станет одновременно претендовать на заключение контракта, вероятность заключения контракта оценивается в 0,85, В противном случае вероятность получения контракта составляет 0,6. По оценкам экспертов компании вероятность того, что конкурент выдвинет свои предложения по заключению контракта, равна 0,55. Чему равна вероятность заключения контракта для этой фирмы? . Данная задача решается с помощью формулы полной вероятности. 2. Экономист-аналитик условно подразделяет экономическую ситуацию в стране на «хорошую», «посредственную» и «плохую» и оценивает их вероятности для данного момента времени в 0,2; 0,7 и 0,15 соответственно. Некоторый индекс экономического состояния возрастает с вероятностью 0,65, когда ситуация «хорошая»; с вероятностью 0,35, когда ситуация посредственная, и с вероятностью 0,1, когда ситуация «плохая». Пусть в настоящий момент индекс экономического состояния возрос. Чему равна вероятность того, что экономика страны на подъеме? . Задача решается с помощью формулы Байеса. 3. Банк выдаёт 9 кредитов. Вероятность невозврата кредита равна 0,2 для каждого заёмщика. Какова вероятность того, что трое заёмщиков не выплатят кредит? Задача решается с помощью формулы Бернулли. 5. Деталь считается годной при отклонении Х линейного размера в абсолютном выражении меньше 1 мм. Отклонение Х является величиной, распределенной по нормальному закону, со среднем квадратическим отклонением   0.35 . Найти количество бракованных деталей в одной партии произведенных деталей (размер партии 1000 шт.), стоимость потерь от брака при себестоимости партии 15 млн. руб., доход от реализации оставшихся годных деталей и экономические потери при рыночной цене 19 000 руб. за единицу продукции . Рассмотрим решение данной задачи. Т.к. Х – отклонение линейного размера в абсолютном выражении, то математическое ожидание М(Х)=а=0. Подставив в формулу  P  X     2      значения    0.35 и   1, получим P X  1  0,9956. Таким образом, в партии из 1000 деталей годными будут 995 деталей. При себестоимости партии 15 млн. руб. себестоимость каждой детали составит в среднем 15 000 руб. Стоимость потерь от брака составят 75000 рублей. Доход от реализации годных деталей по рыночной цене составит 995∙19000 =18,905 млн. руб. В связи с невозможностью реализовать часть продукции экономические потери составят 5∙19000=95000 руб. Методы теории вероятностей также используются в ставках на спорт. С помощью теории вероятностей стало возможным предугадывать и оценивать исходы различных матчей, а также выявлять продуктивность отдельно взятого игрока. Так, например, если мы рассматриваем баскетбол, то в качестве продуктивности игрока можно рассматривать вероятность его попадания в кольцо с различных точек. Приведем примеры задач. 1. На соревнованиях по баскетболу центровой игрок команды «N» бросает мяч в кольцо. За каждый забитый мяч команда получает 2 очка. Найти вероятность того, что за данный бросок центровым команда не получит ни одного очка (0 очков полагается лишь за промах). 2. Две равносильные баскетбольные команды играют в баскетбол. Что вероятнее: вести счет одну четверть из двух или две четверти из четырех (равный счет во внимание не принимается)? Данная задача решается с помощью формулы Бернулли. Итак, нахождение закономерностей в случайных явлениях - это задача теорий вероятности. Теория вероятности - это инструмент для изучения не видимых и многозначных взаимосвязей разных явлений во многочисленных областях науки, техники и экономики. Теория вероятности дает возможность правильно посчитать колебания спроса, предложения, цен и других экономических показателей. Теория вероятности есть часть базовой науки как статистика и прикладная информатика. Так как без теории вероятностей не может работать не одна прикладная программа, и компьютер в целом. И в теории игр она тоже является основной . Список использованных источников: 1. Вентцель Е. С. Теория вероятностей [Электрон. ресурс] : Учеб. пособие. – Москва. – Высшая школа, 1999. – 576 c. – Режим доступа: http://sernam.ru/book_tp.php 2. Методические указания для студентов по проведению практических работ по дисциплине «Математика» [Электрон. ресурс]. – Мончегорск, 2013. – Режим доступа: http://www.studfiles.ru/preview/3829108/ 3. Хуснутдинов, Р. Ш. Математика для экономистов в примерах и задачах [Электрон. ресурс] : учеб. пособие / Р. Ш. Хуснутдинов, В. А. Жихарев. – Санкт-Петербург: Лань, 2012. - 656 с. - Режим доступа: https://e.lanbook.com/book/4233