Основания реагируют с металлами. Основания

а) получение оснований .

1) Общим методом получения оснований является реакция обмена, с помощью которой могут быть получены как нерастворимые, так и растворимые основания:

CuSO 4 + 2 КОН = Сu(ОН) 2  + K 2 SO 4 ,

К 2 СО 3 + Ва(ОН) 2 = 2КОН + ВаСО 3 .

При получении этим методом растворимых оснований в осадок выпадает нерастворимая соль.

2) Щелочи могут быть также получены взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой:

2Li + 2Н 2 О = 2LiOH + H 2 ,

SrO + H 2 O = Sr(OH) 2 .

3) Щелочи в технике обычно получают электролизом водных растворов хлоридов:

б) химические свойства оснований .

1) Наиболее характерной реакцией оснований является их взаимодействие с кислотами - реакция нейтрализации. В нее вступают как щелочи, так и нерастворимые основания:

NaOH + HNO 3 = NaNO 3 + H 2 O,

Cu(OH) 2 + H 2 SO 4 = СuSО 4 + 2 H 2 O .

2) Выше было показано, как щелочи взаимодействуют с кислотными и амфотерными оксидами.

3) При взаимодействии щелочей с растворимыми солями образуется новая соль и новое основание. Такая реакция идет до конца только в том случае, когда хотя бы одно из полученных веществ выпадает в осадок.

FeCl 3 + 3 KOH = Fe(OH) 3  + 3 KCl

4) При нагревании большинство оснований, за исключением гидроксидов щелочных металлов, разлагаются на соответствующий оксид и воду:

2 Fе(ОН) 3 = Fе 2 О 3 + 3 Н 2 О,

Са(ОН) 2 = СаО + Н 2 О.

КИСЛОТЫ – сложные вещества, молекулы которых состоят из одного или нескольких атомов водорода и кислотного остатка. Состав кислот может быть выражен общей формулой Н х А, где А – кислотный остаток. Атомы водорода в кислотах способны замещаться или обмениваться на атомы металлов, при этом образуются соли.

Если кислота содержит один такой атом водорода, то это одноосновная кислота (HCl - соляная, HNO 3 - азотная, HСlO - хлорноватистая, CH 3 COOH - уксусная); два атома водорода - двухосновные кислоты: H 2 SO 4 – серная, H 2 S - сероводородная; три атома водорода - трехосновные: H 3 PO 4 – ортофосфорная, H 3 AsO 4 – ортомышьяковая.

В зависимости от состава кислотного остатка кислоты подразделяют на бескислородные (H 2 S, HBr, HI) и кислородсодержащие (H 3 PO 4 , H 2 SO 3 , H 2 CrO 4). В молекулах кислородсодержащих кислот атомы водорода связаны через кислород с центральным атомом: Н – О – Э. Названия бескислородных кислот образуются из корня русского названия неметалла, соединительной гласной -о - и слова «водородная» (H 2 S – сероводородная). Названия кислородсодержащим кислотам дают так: если неметалл (реже металл), входящий в состав кислотного остатка, находится в высшей степени окисления, то к корню русского названия элемента добавляют суффиксы -н- , -ев-, или -ов- и далее окончание -ая- (H 2 SO 4 – серная, H 2 CrO 4 - хромовая). Если степень окисления центрального атома ниже, то используется суффикс -ист- (H 2 SO 3 – сернистая). Если неметалл образует ряд кислот, используют и другие суффиксы (HClO – хлорноватист ая, HClO 2­ – хлорист ая, HClO 3 – хлорноват ая, HClO 4 – хлорн ая).

С
точки зрения теории электролитической диссоциации, кислоты – электролиты, диссоциирующие в водном растворе с образованием в качестве катионов только ионов водорода:

Н х А хН + +А х-

Наличием Н + -ионов обусловлено изменение окраски индикаторов в растворах кислот: лакмус (красный), метилоранж (розовый).

Получение и свойства кислот

а) получение кислот .

1) Бескислородные кислоты могут быть получены при непосредственном соединении неметаллов с водородом и последующим растворением соответствующих газов в воде:

2) Кислородсодержащие кислоты нередко могут быть получены при взаимодействии кислотных оксидов с водой.

3) Как бескислородные, так и кислородсодержащие кислоты можно получить по реакциям обмена между солями и другими кислотами:

ВаВr 2 + H 2 SO 4 = ВаSО 4 + 2 HBr ,

CuSO 4 + H 2 S = H 2 SO 4 + CuS ,

FeS+ H 2 SO 4 (paзб.) = H 2 S + FeSO 4 ,

NaCl (тв.)+ Н 2 SO 4 (конц.) = HCl + NaHSO 4 ,

AgNO 3 + HCl = AgCl + HNO 3 ,

4) В ряде случаев для получения кислот могут быть использованы окислительно-восстановительные реакции:

3Р + 5НNО 3 + 2Н 2 О = 3Н 3 РO 4 + 5NO 

б) химические свойства кислот .

1) Кислоты взаимодействуют с основаниями и амфотерными гидроксидами. При этом практически нерастворимые кислоты (H 2 SiO 3 , H 3 BO 3) могут реагировать только с растворимыми щелочами.

H 2 SiO 3 +2NaOH=Na 2 SiO 3 +2H 2 O

2) Взаимодействие кислот с основными и амфотерными оксидами рассмотрено выше.

3) Взаимодействие кислот с солями – это обменная реакция с образованием соли и воды. Эта реакция идет до конца, если продуктом реакции является нерастворимое или летучее вещество, либо слабый электролит.

Ni 2 SiO 3 +2HCl=2NaCl+H 2 SiO 3

Na 2 CO 3 +H 2 SO 4 =Na 2 SO 4 +H 2 O+CO 2 

4) Взаимодействие кислот с металлами – окислительно-восстановительный процесс. Восстановитель – металл, окислитель – ионы водорода (кислоты-неокислители: HCl, HBr, HI, H 2 SO 4(разбавл), H 3 PO 4) или анион кислотного остатка (кислоты-окислители: H 2 SO 4(конц) , HNO 3­(конц и разб)). Продуктами реакции взаимодействия кислот-неокислителей с металлами, стоящими в ряду напряжений до водорода, являются соль и газообразный водород:

Zn+H 2 SO 4(разб) =ZnSO 4 +H 2 

Zn+2HCl=ZnCl 2 +H 2 

Кислоты окислители взаимодействуют почти со всеми металлами, включая и малоактивные (Cu, Hg, Ag), при этом образуются продукты восстановления аниона кислоты, соль и вода:

Сu + 2Н 2 SO 4 (конц.) = CuSO 4 + SO 2 + 2 Н 2 O,

Рb + 4НNО 3(конц) = Pb(NO 3) 2 +2NO 2 + 2Н 2 O

АМФОТЕРНЫЕ ГИДРОКСИДЫ проявляют кислотно-основную двойственность: с кислотами они реагируют как основания:

2Cr(OH) 3 + 3H 2 SO 4 = Cr 2 (SO 4) 3 + 6H 2 O,

а с основаниями – как кислоты:

Cr(OH) 3 + NaOH = Na (реакция протекает в растворе щелочи);

Сr(OH) 3 +NaOH =NaCrO 2 +2H 2 O (реакция протекает между твердыми веществами при сплавлении).

С сильными кислотами и основаниями амфотерные гидроксиды образуют соли.

Как и другие нерастворимые гидроксиды, амфотерные гидроксиды разлагаются при нагревании на оксид и воду:

Be(OH) 2 = BeO+H 2 O.

СОЛИ – ионные соединения, состоящие из катионов металлов (или аммония) и анионов кислотных остатков. Любую соль можно рассматривать как продукт реакции нейтрализации основания кислотой. В зависимости от того, в каком соотношении взяты кислота и основание, получаются соли: средние (ZnSO 4 , MgCl 2) – продукт полной нейтрализации основания кислотой, кислые (NaHCO 3 , KH 2 PO 4) – при избытке кислоты, основные (CuOHCl, AlOHSO 4) – при избытке основания.

Названия солей по международной номенклатуре образуют из двух слов: названия аниона кислоты в именительном падеже и катиона металла в родительном с указанием степени его окисления, если она переменная, римской цифрой в скобках. Например: Cr 2 (SO 4) 3 – сульфат хрома (III), AlCl 3 – хлорид алюминия. Названия кислых солей образуют добавлением слова гидро- или дигидро- (в зависимости от числа атомов водорода в гидроанионе): Ca(HCO 3) 2 – гидрокарбонат кальция, NaH 2 PO 4 - дигидрофосфат натрия. Названия основных солей образуют добавлением слова гидроксо- или дигидроксо- : (AlOH)Cl 2 – гидроксохлорид алюминия, 2 SO 4 - дигидроксосульфат хрома(III).

Получение и свойства солей

а) химические свойства солей .

1) Взаимодействие солей с металлами – окислительно-восстановительный процесс. При этом металл, стоящий левее в электрохимическом ряду напряжений, вытесняет последующие из растворов их солей:

Zn+CuSO 4 =ZnSO 4 +Cu

Щелочные и щелочноземельные металлы не используют для восстановления других металлов из водных растворов их солей, поскольку они взаимодействуют с водой, вытесняя водород:

2Na+2H 2 O=H 2 +2NaOH.

2) Взаимодействие солей с кислотами и щелочами было рассмотрено выше.

3) Взаимодействие солей между собой в растворе протекают необратимо лишь в том случае, если один из продуктов – малорастворимое вещество:

BaCl 2 +Na 2 SO 4 =BaSO 4 +2NaCl.

4) Гидролиз солей - обменное разложение некоторых солей водой. Гидролиз солей будет подробно рассмотрен в теме «электролитическая диссоциация».

б) способы получения солей .

В лабораторной практике обычно используют следующие способы получения солей, основанные на химических свойствах различных классов соединений и простых веществ:

1) Взаимодействие металлов с неметаллами:

Cu+Cl 2 =CuCl 2 ,

2) Взаимодействие металлов с растворами солей:

Fe+CuCl 2 =FeCl 2 +Cu.

3) Взаимодействие металлов с кислотами:

Fe+2HCl=FeCl 2 +H 2 .

4) Взаимодействие кислот с основаниями и амфотерными гидроксидами:

3HCl+Al(OH) 3 =AlCl 3 +3H 2 O.

5) Взаимодействие кислот с основными и амфотерными оксидами:

2HNO 3 +CuO=Cu(NO 3) 2 +2H 2 O.

6) Взаимодействие кислот с солями:

HCl+AgNO 3 =AgCl+HNO 3 .

7) Взаимодействие щелочей с солями в растворе:

3KOH+FeCl 3 =Fe(OH) 3 +3KCl.

8) Взаимодействие двух солей в растворе:

NaCl+AgNO 3 =NaNO 3 +AgCl.

9) Взаимодействие щелочей с кислотными и амфотерными оксидами:

Ca(OH) 2 +CO 2 =CaCO 3 +H 2 O.

10) Взаимодействие оксидов различного характера друг с другом:

CaO+CO 2 =CaCO 3 .

Соли встречаются в природе в виде минералов и горных пород, в растворенном состоянии в воде океанов и морей.

Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?

1) К основаниями или основным гидроксидам относят гидроксиды металлов в степени окисления +1 либо +2, т.е. формулы которых записываются либо как MeOH , либо как Me(OH) 2 . Однако существуют исключения. Так, гидроксиды Zn(OH) 2 , Be(OH) 2 , Pb(OH) 2 , Sn(OH) 2 к основаниям не относятся.

2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH) 2 , Be(OH) 2 , Pb(OH) 2 , Sn(OH) 2 . Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.

Химические свойства оснований

Все основания подразделяют на:

Напомним, что бериллий и магний к щелочноземельным металлам не относятся.

Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.

Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.

Взаимодействие оснований с кислотами

Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:

Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:

Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH) 2 могут образовывать основные соли при недостатке кислоты, например:

Взаимодействие с кислотными оксидами

Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:

Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P 2 O 5 , SO 3 , N 2 O 5 , с образованием средних соле1:

Нерастворимые основания вида Me(OH) 2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:

Cu(OH) 2 + CO 2 = (CuOH) 2 CO 3 + H 2 O

С диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:

Взаимодействие оснований с амфотерными оксидами и гидроксидами

Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:

Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:

В случае алюминия при действии избытка концентрированной щелочи вместо соли Na образуется соль Na 3 :

Взаимодействие оснований с солями

Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:

1) растворимость исходных соединений;

2) наличие осадка или газа среди продуктов реакции

Например:

Термическая устойчивость оснований

Все щелочи, кроме Ca(OH) 2 , устойчивы к нагреванию и плавятся без разложения.

Все нерастворимые основания, а также малорастворимый Ca(OH) 2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000 o C:

Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 o C:

Химические свойства амфотерных гидроксидов

Взаимодействие амфотерных гидроксидов с кислотами

Амфотерные гидроксиды реагируют с сильными кислотами:

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH) 3, не реагируют с такими кислотами, как H 2 S, H 2 SO 3 и H 2 СO 3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:

Взаимодействие амфотерных гидроксидов с кислотными оксидами

Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO 3 , P 2 O 5 , N 2 O 5):

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH) 3 , не реагируют с кислотными оксидами SO 2 и СO 2 .

Взаимодействие амфотерных гидроксидов с основаниями

Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:

А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:

Взаимодействие амфотерных гидроксидов с основными оксидами

Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:

Термическое разложение амфотерных гидроксидов

Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду.


Нерастворимое основание: гидроксид меди

Основания - называют электролиты, в растворах которых отсутствуют анионы, кроме гидроксид-ионов (анионы - это ионы, которые имеют отрицательный заряд, в данном случае - это ионы OH -). Названия оснований состоят из трёх частей: слова гидроксид , к которому добавляют название металла (в родительном падеже). Например, гидроксид меди (Cu(OH) 2). Для некоторых оснований могут используются старые названия, например гидроксид натрия (NaOH) - натриевая щелочь .

Едкий натр , гидроксид натрия , натриевая щелочь , каустическая сода - всё это одно и тоже вещество, химическая формула которого NaOH. Безводный гидроксид натрия - это белое кристаллическое вещество. Раствор - прозрачная жидкость, на вид ничем не отличимая от воды. При использовании будьте осторожны! Едкий натр сильно обжигает кожу!

В основу классификации оснований положена их способность растворяться в воде. От растворимости в воде зависят некоторые свойства оснований. Так, основания , растворимые в воде, называют щелочью . К ним относятся гидроксиды натрия (NaOH), гидроксид калия (KOH), лития (LiOH), иногда к их числу прибавляют и гидроксид кальция (Ca(OH) 2)), хотя на самом деле - это малорастворимое вещество белого цвета (гашенная известь).

Получение оснований

Получение оснований и щелочей может производиться различными способами. Для получения щелочи можно использовать химическое взаимодействие металла с водой. Такие реакции протекают с очень большим выделением тепла, вплоть до воспламенения (воспламенение происходит по причине выделения водорода в процессе реакции).

2Na + 2H 2 O → 2NaOH + H 2

Негашенная известь - CaO

CaO + H 2 O → Ca(OH) 2

Но в промышленности эти методы не нашли практического значения, конечно кроме получения гидроксида кальция Ca(OH) 2 . Получение гидроксида натрия и гидроксида калия связано с использованием электрического тока. При электролизе водного раствора хлорида натрия или калия на катоде выделяются водород, а на аноде - хлор , при этом в растворе, где происходит электролиз, накапливается щелочь !

KCl + 2H 2 O →2KOH + H 2 + Cl 2 (эта реакция проходит при пропускании электрического тока через раствор).

Нерастворимые основания осаждают щелочами из растворов соответствующих солей.

CuSO 4 + 2NaOH → Cu(OH) 2 + Na 2 SO 4

Свойства оснований

Щелочи устойчивы к нагреванию. Гидроксид натрия можно расплавить и расплав довести до кипения, при этом он разлагаться не будет. Щелочи легко вступают в реакцию с кислотами, в результате которого образуется соль и вода. Эта реакция ещё носит название - реакция нейтрализации

KOH + HCl → KCl + H 2 O

Щёлочи взаимодействуют с кислотными оксидами, в результате которой образуется соль и вода.

2NaOH + CO 2 → Na 2 CO 3 + H 2 O

Нерастворимые основания , в отличии от щелочей, термически не стойкие вещества. Некоторые из них, например, гидроксид меди , разлагаются при нагревании,

Cu(OH) 2 + CuO → H 2 O
другие - даже при комнатной температуре (например, гидроксид серебра - AgOH).

Нерастворимые основания взаимодействуют с кислотами, реакция происходит лишь в том случае, если соль, которая образуется при реакции, растворяется в воде.

Cu(OH) 2 + 2HCl → CuCl 2 + 2H 2 O

Растворение щелочного металла в воде с изменение цвета индикатора на ярко-красный

Щелочные металлы - такие металлы, которые при взаимодействии с водой образуют щелочь . К типичному представителю щелочных металлов относится натрий Na. Натрий легче воды, поэтому его химическая реакция с водой происходит на её поверхности. Активно растворяясь в воде, натрий вытесняет из неё водород, при этом образуя натриевую щелочь (или гидроксид натрия) - едкий натр NaOH. Реакция протекает следующим образом:

2Na + 2H 2 O → 2NaOH + H 2

Подобным образом ведут себя все щелочные металлы. Если перед началом реакцией в воду добавить индикатор фенолфталеин, а затем опустить в воду кусочек натрия, то натрий будет скользить по воде, оставляя за собой ярко розовый след образовавшейся щелочи (щелочь окрашивает фенолфталеин в розовый цвет)

Гидроксид железа

Гидроксид железа является основанием. Железо, в зависимости от степени его окисления, образует два разных основания: гидроксид железа, где железо может иметь валентности (II) - Fe(OH) 2 и (III) - Fe(OH) 3 . Как и основания, образованные большинством металлов, оба основания железа не растворимы в воде.


Гидроксид железа (II) - белое студенистое вещество (осадок в растворе), которое обладает сильными восстановительными свойствами. К тому же, гидроксид железа (II) очень не стойкий. Если к раствору гидроксида железа (II) добавить немного щёлочи, то выпадет зелёный осадок, который достаточно быстро темнеет о превращается в бурый осадок железа (III).

Гидроксид железа (III) имеет амфотерные свойства, но кислотные свойства у него выражены значительно слабее. Получить гидроксид железа (III) можно в результате химической реакции обмена между солью железа и щёлочью. Например

Fe 2 (SO 4) 3 + 6 NaOH → 3 Na 2 SO 4 +2 Fe(OH) 3

1. Основания взаимодействуют с кислотами, образуя соль и воду:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O

2. С кислотными оксидами, образуя соль и воду:

Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O

3. Щелочи реагируют с амфотерными оксидами и гидроксидами, образуя соль и воду:

2NaOH + Cr 2 O 3 = 2NaCrO 2 + H 2 O

KOH + Cr(OH) 3 = KCrO 2 + 2H 2 O

4. Щелочи взаимодействуют с растворимыми солями, образуя, либо слабое основание, либо осадок, либо газ:

2NaOH + NiCl 2 = Ni(OH) 2 ¯ + 2NaCl

основание

2KOH + (NH 4) 2 SO 4 = 2NH 3 ­ + 2H 2 O + K 2 SO 4

Ba(OH) 2 + Na 2 CO 3 = BaCO 3 ¯ + 2NaOH

5. Щелочи реагируют с некоторыми металлами, которым соответствуют амфотерные оксиды:

2NaOH + 2Al + 6H 2 O = 2Na + 3H 2 ­

6. Действие щелочи на индикатор:

OH - + фенолфталеин ® малиновый цвет

OH - + лакмус ® синий цвет

7. Разложение некоторых оснований при нагревании:

Сu(OH) 2 ® CuO + H 2 O

Амфотерные гидроксиды – химические соединения, проявляющие свойства и оснований, и кислот. Амфотерные гидроксиды соответствуют амфотерным оксидам (см. п.3.1).

Амфотерные гидроксиды записывают, как правило, в форме основания, но их можно представить и в виде кислоты:

Zn(OH) 2 Û H 2 ZnO 2

основание к-та

Химические свойства амфотерных гидроксидов

1. Амфотерные гидроксиды взаимодействуют с кислотами и кислотными оксидами:

Be(OH) 2 + 2HCl = BeCl 2 + 2H 2 O

Be(OH) 2 + SO 3 = BeSO 4 + H 2 O

2. Взаимодействуют со щелочами и основными оксидами щелочных и щелочноземельных металлов:

Al(OH) 3 + NaOH = NaAlO 2 + 2H 2 O;

H 3 AlO 3 кислота метаалюминат натрия

(H 3 AlO 3 ® HAlO 2 + H 2 O)

2Al(OH) 3 + Na 2 O = 2NaAlO 2 + 3H 2 O

Все амфотерные гидроксиды являются слабыми электролитами

Соли

Соли – это сложные вещества, состоящие из ионов металла и кислотного остатка. Соли представляют собой продукты полного или частичного замещения ионов водорода ионами металла (или аммония) у кислот. Типы солей: средние (нормальные), кислые и основные.

Средние соли – это продукты полного замещения катионов водорода у кислот ионами металла (или аммония) :Na 2 CO 3 , NiSO 4 , NH 4 Cl и т.д.

Химические свойства средних солей

1. Соли взаимодействуют с кислотами, щелочами и другими солями, образуя, либо слабый электролит, либо осадок; либо газ:

Ba(NO 3) 2 + H 2 SO 4 = BaSO 4 ¯ + 2HNO 3

Na 2 SO 4 + Ba(OH) 2 = BaSO 4 ¯ + 2NaOH

CaCl 2 + 2AgNO 3 = 2AgCl¯ + Ca(NO 3) 2

2CH 3 COONa + H 2 SO 4 = Na 2 SO 4 + 2CH 3 COOH

NiSO 4 + 2KOH = Ni(OH) 2 ¯ + K 2 SO 4

основание

NH 4 NO 3 + NaOH = NH 3 ­ + H 2 O + NaNO 3

2. Соли взаимодействуют с более активными металлами. Более активный металл вытесняет менее активный из раствора соли (прил. 3).

Zn + CuSO 4 = ZnSO 4 + Cu

Кислые соли – это продукты неполного замещения катионов водорода у кислот ионами металла (или аммония): NaHCO 3 , NaH 2 PO 4 , Na 2 HPO 4 и т.д. Кислые соли могут быть образованы только многоосновными кислотами. Практически все кислые соли хорошо растворимы в воде.

Получение кислых солей и перевод их в средние

1. Кислые соли получают при взаимодействии избытка кислоты или кислотного оксида с основанием:

H 2 CO 3 + NaOH = NaHCO 3 + H 2 O

CO 2 + NaOH = NaHCO 3

2. При взаимодействии избытка кислоты с основным оксидом:

2H 2 CO 3 + CaO = Ca(HCO 3) 2 + H 2 O

3. Кислые соли получают из средних солей, добавляя кислоту:

· одноименную

Na 2 SO 3 + H 2 SO 3 = 2NaHSO 3 ;

Na 2 SO 3 + HCl = NaHSO 3 + NaCl

4. Кислые соли переводят в средние, используя щелочь:

NaHCO 3 + NaOH = Na 2 CO 3 + H 2 O

Основные соли – это продукты неполного замещения гидроксогрупп (ОН - ) основания кислотным остатком: MgOHCl, AlOHSO 4 и т.д. Основные соли могут быть образованы только слабыми основаниями многовалентных металлов. Эти соли, как правило, труднорастворимы.

Получение основных солей и перевод их в средние

1. Основные соли получают при взаимодействии избытка основания с кислотой или кислотным оксидом:

Mg(OH) 2 + HCl = MgOHCl¯ + H 2 O

гидроксо-

хлорид магния

Fe(OH) 3 + SO 3 = FeOHSO 4 ¯ + H 2 O

гидроксо-

сульфат железа (III)

2. Основные соли образуются из средней соли при добавлении недостатка щелочи:

Fe 2 (SO 4) 3 + 2NaOH = 2FeOHSO 4 + Na 2 SO 4

3. Основные соли переводят в средние, добавляя кислоту (лучше ту, которая соответствует соли):

MgOHCl + HCl = MgCl 2 + H 2 O

2MgOHCl + H 2 SO 4 = MgCl 2 +MgSO 4 + 2H 2 O


ЭЛЕКТРОЛИТЫ

Электролиты – это вещества, распадающиеся на ионы в растворе под влиянием полярных молекул растворителя (Н 2 О). По способности к диссоциации (распаду на ионы) электролиты условно делят на сильные и слабые. Сильные электролиты диссоциируют практически полностью (в разбавленных растворах), а слабые распадаются на ионы лишь частично.

К сильным электролитам относятся:

· сильные кислоты (см. с. 20);

· сильные основания – щелочи (см. с. 22);

· практически все растворимые соли.

К слабым электролитам относятся:

· слабые кислоты (см. с. 20);

· основания – не щелочи;

Одной из основных характеристик слабого электролита является константа диссоциации К . Например, для одноосновной кислоты,

HA Û H + + A - ,

где, – равновесная концентрация ионов H + ;

– равновесная концентрация анионов кислоты А - ;

– равновесная концентрация молекул кислоты,

Или для слабого основания,

MOH Û M + + OH - ,

,

где, – равновесная концентрация катионов M + ;

– равновесная концентрация гидроксид ионов ОН - ;

– равновесная концентрация молекул слабого основания.

Константы диссоциации некоторых слабых электролитов (при t = 25°С)

Вещество К Вещество К
HCOOH K = 1,8×10 -4 H 3 PO 4 K 1 = 7,5×10 -3
CH 3 COOH K = 1,8×10 -5 K 2 = 6,3×10 -8
HCN K = 7,9×10 -10 K 3 = 1,3×10 -12
H 2 CO 3 K 1 = 4,4×10 -7 HClO K = 2,9×10 -8
K 2 = 4,8×10 -11 H 3 BO 3 K 1 = 5,8×10 -10
HF K = 6,6×10 -4 K 2 = 1,8×10 -13
HNO 2 K = 4,0×10 -4 K 3 = 1,6×10 -14
H 2 SO 3 K 1 = 1,7×10 -2 H 2 O K = 1,8×10 -16
K 2 = 6,3×10 -8 NH 3 × H 2 O K = 1,8×10 -5
H 2 S K 1 = 1,1×10 -7 Al(OH) 3 K 3 = 1,4×10 -9
K 2 = 1,0×10 -14 Zn(OH) 2 K 1 = 4,4×10 -5
H 2 SiO 3 K 1 = 1,3×10 -10 K 2 = 1,5×10 -9
K 2 = 1,6×10 -12 Cd(OH) 2 K 2 = 5,0×10 -3
Fe(OH) 2 K 2 = 1,3×10 -4 Cr(OH) 3 K 3 = 1,0×10 -10
Fe(OH) 3 K 2 = 1,8×10 -11 Ag(OH) K = 1,1×10 -4
K 3 = 1,3×10 -12 Pb(OH) 2 K 1 = 9,6×10 -4
Cu(OH) 2 K 2 = 3,4×10 -7 K 2 = 3,0×10 -8
Ni(OH) 2 K 2 = 2,5×10 -5

3. Гидроксиды

Среди многоэлементных соединений важную группу составляют гидроксиды. Некоторые из них проявляют свойства оснований (основные гидроксиды) - NaOH , Ba (OH ) 2 и т.п.; другие проявляют свойства кислот (кислотные гидроксиды) - HNO 3 , H 3 PO 4 и другие. Существуют и амфотерные гидроксиды, способные в зависимости от условий проявлять как свойства оснований, так и свойства кислот - Zn (OH ) 2 , Al (OH ) 3 и т.п.

3.1. Классификация, получение и свойства оснований

Основаниями (основными гидроксидами) с позиции теории электролитической диссоциации являются вещества, диссоциирующие в растворах с образованием гидроксид-ионов ОН - .

По современной номенклатуре их принято называть гидроксидами элементов с указанием, если необходимо, валентности элемента (римскими цифрами в скобках): КОН - гидроксид калия, гидроксид натрия NaOH , гидроксид кальция Ca (OH ) 2 , гидроксид хрома (II ) - Cr (OH ) 2 , гидроксид хрома (III ) - Cr (OH ) 3 .

Гидроксиды металлов принято делить на две группы: растворимые в воде (образованные щелочными и щелочноземельными металлами - Li , Na , K , Cs , Rb , Fr , Ca , Sr , Ba и поэтому называемые щелочами) и нерастворимые в воде . Основное различие между ними заключается в том, что концентрация ионов ОН - в растворах щелочей достаточно высока, для нерастворимых же оснований она определяется растворимостью вещества и обычно очень мала. Тем не менее, небольшие равновесные концентрации иона ОН - даже в растворах нерастворимых оснований определяют свойства этого класса соединений.

По числу гидроксильных групп (кислотность) , способных замещаться на кислотный остаток, различают:

Однокислотные основания - KOH , NaOH ;

Двухкислотные основания - Fe (OH ) 2 , Ba (OH ) 2 ;

Трехкислотные основания - Al (OH ) 3 , Fe (OH ) 3 .

Получение оснований

1. Общим методом получения оснований является реакция обмена, с помощью которой могут быть получены как нерастворимые, так и растворимые основания:

CuSO 4 + 2KOH = Cu(OH) 2 ↓ + K 2 SO 4 ,

K 2 SO 4 + Ba(OH) 2 = 2KOH + BaCO 3 ↓ .

При получении этим методом растворимых оснований в осадок выпадает нерастворимая соль.

При получении нерастворимых в воде оснований, обладающих амфотерными свойствами, следует избегать избытка щелочи, так как может произойти растворение амфотерного основания, например,

AlCl 3 + 3KOH = Al(OH) 3 + 3KCl,

Al(OH) 3 + KOH = K.

В подобных случаях для получения гидроксидов используют гидроксид аммония, в котором амфотерные оксиды не растворяются:

AlCl 3 + 3NH 4 OH = Al(OH) 3 ↓ + 3NH 4 Cl.

Гидроксиды серебра, ртути настолько легко распадаются, что при попытке их получения обменной реакцией вместо гидроксидов выпадают оксиды:

2AgNO 3 + 2KOH = Ag 2 O ↓ + H 2 O + 2KNO 3 .

2. Щелочи в технике обычно получают электролизом водных растворов хлоридов:

2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2 .

(суммарная реакция электролиза)

Щелочи могут быть также получены взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой:

2 Li + 2 H 2 O = 2 LiOH + H 2 ,

SrO + H 2 O = Sr (OH ) 2 .

Химические свойства оснований

1. Все нерастворимые в воде основания при нагревании разлагаются с образованием оксидов:

2 Fe (OH ) 3 = Fe 2 O 3 + 3 H 2 O ,

Ca (OH ) 2 = CaO + H 2 O .

2. Наиболее характерной реакцией оснований является их взаимодействие с кислотами - реакция нейтрализации. В нее вступают как щелочи, так и нерастворимые основания:

NaOH + HNO 3 = NaNO 3 + H 2 O ,

Cu(OH) 2 + H 2 SO 4 = CuSO 4 + 2H 2 O.

3. Щелочи взаимодействуют с кислотными и с амфотерными оксидами:

2KOH + CO 2 = K 2 CO 3 + H 2 O,

2NaOH + Al 2 O 3 = 2NaAlO 2 + H 2 O.

4. Основания могут вступать в реакцию с кислыми солями:

2NaHSO 3 + 2KOH = Na 2 SO 3 + K 2 SO 3 +2H 2 O,

Ca(HCO 3) 2 + Ba(OH) 2 = BaCO 3 ↓ + CaCO 3 + 2H 2 O.

Cu(OH) 2 + 2NaHSO 4 = CuSO 4 + Na 2 SO 4 +2H 2 O.

5. Необходимо особенно подчеркнуть способность растворов щелочей реагировать с некоторыми неметаллами (галогенами, серой, белым фосфором, кремнием):

2 NaOH + Cl 2 = NaCl + NaOCl + H 2 O (на холоду),

6 KOH + 3 Cl 2 = 5 KCl + KClO 3 + 3 H 2 O (при нагревании),

6KOH + 3S = K 2 SO 3 + 2K 2 S + 3H 2 O,

3KOH + 4P + 3H 2 O = PH 3 + 3KH 2 PO 2 ,

2NaOH + Si + H 2 O = Na 2 SiO 3 + 2H 2 .

6. Кроме того, концентрированные растворы щелочей при нагревании способны растворять также и некоторые металлы (те, соединения которых обладают амфотерными свойствами):

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2 ,

Zn + 2KOH + 2H 2 O = K 2 + H 2 .

Растворы щелочей имеют рН > 7 (щелочная среда), изменяют окраску индикаторов (лакмус - синяя, фенолфталеин - фиолетовая).

М.В. Андрюxoва, Л.Н. Бopoдина