Выходные 5 и 6 августа. Фестиваль «Дикий подводный мир»

Мы познакомились с возможными физическими различиями между нами и нашими космическими собратьями. Теперь приступим к тому, что может оказаться для нас более существенным, - к интеллектуальным различиям. Эту проблему можно сформулировать так.

Загадка 1. Обогнали нас в своем развитии другие цивилизации или они отстали от нас?

Допустим, что в нашей Галактике по меньшей мере миллион «двойников» Земли, на которых существует разумная жизнь. Они образовались в различные эпохи - на миллионы лет раньше или позже нашей, - и, следовательно, находятся на разных ступенях развития. Времена динозавров, доисторического человека, ранней Римской империи - все эти эпохи истории Земли в настоящее время, возможно, «копируются», причем одновременно на нескольких планетах. Не исключено, что в свою очередь мы на Земле переживаем сейчас эру, которую другие миры миновали тысячи или даже миллионы лет назад.

Много ли цивилизаций превзошло нас в своем развитии? И насколько? То, что говорит по этому поводу Позин, отнюдь не утешительно для нашей гордости. Земля не может войти в число цивилизаций высокой или даже средней степени развития. Скорее всего мы занимаем ступень, не слишком далекую от нижнего конца эволюционной шкалы. Это вытекает из простой и, как нам кажется, неоспоримой логики.

Астрономы считают, что энергии нашего Солнца хватит по крайней мере на 10 млрд. лет. Сложив это число с возрастом Земли, оцениваемым в 5 млрд. лет, получим полное время существования Земли - 15 млрд. лет. Прошло 2,5 млрд. лет до зарождения жизни на Земле, и еще столько же - до появления человека, что в сумме составляет 1 / 3 от «выделенных» на долю Земли 15 млрд. лет. Человек, следы нецивилизованного предшественника которого удается проследить лишь на миллион лет назад, вышел из пещер и начал приобщаться к цивилизации самое большее 12 000 лет назад. Следовательно, для дальнейшего развития человечества остается 10 млрд. лет.

Если «продолжительность жизни» миллиона других планет, подобных Земле, также составляет 15 млрд. лет, их средний возраст - 7,5 млрд. лет, а средний возраст цивилизаций - 2,5 млрд. лет. Но около половины этих «двойников» Земли, то есть примерно 500 000 планет, еще старше.

Поскольку мы находимся вблизи самой нижней ступеньки малоразвитой половины, мы, вероятно, превосходим в своем развитии приблизительно 50 000 цивилизаций, но уступаем 950 000 других. Те, возраст которых 10 млрд. лет (подумать только - миллионы веков!) и которые достигли невообразимых высот в умственном развитии, вне всяких сомнений, поставили бы нас, землян, не выше искусных муравьев, живущих колониями и обнаруживающих сомнительный интеллект.

Однако наши подсчеты обитаемых миров могут оказаться ошибочными. Не исключено, что на многих планетах условия препятствуют возникновению жизни. Вероятно, что некоторые цивилизации в процессе эволюции столкнулись с препятствиями и смогли нормально развиваться лишь после длительной задержки. Часть звезд преждевременно вспыхнули как новые, нанеся тем самым непоправимый ущерб обитаемым планетам, которые обращаются вокруг них. И кто знает, сколько цивилизаций погибло в огне атомных войн?

Но даже сотни и тысячи подобных ограничений ненамного уменьшат число цивилизаций, которые старше и, по-видимому, умнее нашей. Независимо от того, как мы к этому относимся, Земля находится, вероятно, на уровне примитивной космической культуры. Существуют многие тысячи цивилизаций, которые опережают нас на большее число лет, чем требуется свету для преодоления разделяющего нас расстояния.

Загадка 2. Посещалась ли Земля инопланетными существами, которые наблюдали за нами при помощи летающих тарелок?

Большинство ученых сразу же скептически улыбнутся, услышав о летающих тарелках.

По заявлениям авторитетных специалистов, в большинстве случаев летающие тарелки всего лишь игра воображения. Особенно это относится к так называемым контактным неотождествленным летающим объектам (НЛО), которые якобы запущены с Марса, Венеры или других планет и регулярно совершают посадку на свои базы. Некоторые из них объявляли межзвездными космическими кораблями, что вызвало оживленные дискуссии об экзотических переживаниях их экипажей.

Но нельзя совершенно не учитывать мнения тех, кто считает, что НЛО, даже если они и не садились на Землю, появлялись в нашем небе. После первого сообщения Арнольда в 1947 г. специальными поисковыми группами было зарегистрировано свыше 20 000 случаев появления летающих тарелок - странных образований необычной формы либо накаленных добела объектов, мчащихся в воздухе с огромными скоростями. Ряд заслуживающих доверия специалистов - летчики, операторы радаров и даже некоторые ученые - утверждали, что они не раз наблюдали такие явления.

Главное, что показала вся кампания по проверке реальности НЛО, - это то, что в течение более чем 15 лет не было представлено ни одного убедительного доказательства их существования. Приверженцы НЛО утверждают, что некоторые фотографии осколков «взорвавшихся тарелок», странного пепельного следа позади подозрительного объекта и другие косвенные свидетельства подтверждают существование инопланетных посланцев. Но ни одно из этих «доказательств» неприемлемо ни для автора книги, ни для научной общественности в целом.

Приверженцы «летающих тарелок» позволяют себе произвольное истолкование то одного, то другого факта - и всегда в свою пользу. Если бы кто-нибудь вдруг объявил, что Земля полая, сторонники летающих тарелок были бы среди тех, кто потребовал бы доказательств. Они отвергли бы интерпретацию сейсмических записей как исчезновение звуковых волн в гигантской полости на глубине, скажем, 800 км . Они спрашивали бы, почему сотни опытных сейсмологов не получили таких результатов, и были бы совершенно правы, не признавая этой дикой теории, основанной на шатких доказательствах, приводимых ничтожной группкой фанатиков, отстаивающих свою модель полой Земли. Однако сами сторонники «летающих тарелок», по-видимому, неспособны понять порочность своей позиции, самоуверенно выдвигая легковесные и необъективные доводы.

Если в один прекрасный день летающая тарелка приземлится и весь мир увидит своими глазами, что из нее вышел космонавт с другой планеты, то ученые - и вместе с ними автор - признают свою ошибку.

Поскольку развитие техники орбитальных полетов приведет к полетам на Луну и к появлению обитаемых космических станций, наши космонавты со временем смогут ответить на вопрос, одни ли они в космосе. Не в меру фанатичные сторонники «летающих тарелок», требующие уже сегодня опознания в подозрительных объектах космических гостей, должны набраться терпения, а пока их требования совершенно беспочвенны. Если бы пришельцы имели какую-то определенную цель, скажем завоевание Земли, то, располагая чрезвычайно развитой техникой, в том числе «летающими тарелками», они давно бы ее осуществили.

Другой аргумент: пилоты намеренно предпочитают наблюдать нас издалека, так как опасаются, что их приземление вызовет панику среди обитателей Земли и, возможно, угрозу космической войны. Это попытка объяснить немаловажный факт, что ни один из кораблей-тарелок ни разу не опустился на Землю и его экипаж не вступил с нами, обитателями Земли, в прямой контакт.

Конечно, можно предполагать, что пришельцы из других миров в прошлом посещали Землю. Достаточно вспомнить, что за 10 млрд. лет многие цивилизации могли достигнуть необычайно высокого уровня развития космической техники, чтобы согласиться с возможностью многократных посещений Земли, разделенных интервалами в миллион лет. Такие визиты отнюдь не кажутся фантастическими теперь, когда человек сам готов посетить Луну и другие планеты и уже мечтает о полетах к звездам.

Итак, логика почти неумолимо подсказывает нам, что в исследовании Галактики сейчас принимают участие тысячи цивилизаций и, быть может, светофоры, регулирующие это удивительное «космическое движение», управляются из единого центра.

Загадка 3. Существует ли Космическая организация объединенных цивилизаций?

Фантазия? Но почему же, если в Галактике по крайней мере миллион обитаемых планет? Если большинство цивилизаций перегнали нас в своем развитии и уже давно разослали по всем направлениям межзвездные корабли, они рано или поздно должны были встретиться друг с другом. Возможно, имели место настоящие «войны миров» и возникали империи, военными трофеями которых были отдельные планеты. И все остальные темные деяния, совершенные человеком на Земле, могут повториться в космическом масштабе.

Вероятно, была бы разработана система космического права и образована галактическая ассамблея, включающая как представителей передовых цивилизаций, так и малоразвитых новичков. Ее сессии могут принимать резолюции, направленные на сохранение мира и сокращение разрыва в уровне развития цивилизаций, разделенных многими световыми годами.

Начало Организации объединенных цивилизаций было бы положено миллионы лет назад. И, когда делегаты нашей солнечной системы прибудут на «многолюдную» ассамблею и с изумлением оглядят инопланетных дипломатов, Земля будет одним из последних членов, только что достигших галактического статута и вышедших из числа слаборазвитых планет.

Самые видные ученые Земли не видят в этой идее ничего антинаучного, и Хойл совершенно серьезно говорит о «межзвездном клубе», в который когда-нибудь будет приглашено и человечество.

Объединение усилий различных цивилизаций для решения общегалактических задач и развития техники (начавшееся, вероятно, еще до появления на Земле первого микроорганизма), несомненно, привело бы к планомерным поискам отсталых цивилизаций, которым еще недоступны межзвездные полеты. Если на обнаруженной планете пока нет разумных существ или их культура еще слишком примитивна для решения настоящих космических задач, такая планета не может быть сочтена кандидатом в члены сообщества. Земля оказалась бы такой планетой.

Но нет никакой уверенности в том, что высокоразвитые в области космической техники, но еще не достигшие социальной зрелости цивилизации не попытались бы завоевать другие планеты. Вполне возможно, что некоторые из наших древних и самых живучих легенд обязаны своим появлением вторжению космических пришельцев.

Например, гибель легендарной Атлантиды в океане была безжалостным актом, который космические конкистадоры совершили после ее ограбления (золото, бриллианты, уран или даже железо - редкий и потому бесценный металл на их планете), скрыв следы своего преступления от бдительных патрулей «гуманной» группы цивилизаций.

Загадка 4. Был ли Тунгусский метеорит космическим кораблем с экипажем?

В июне 1908 г. на территорию Восточной Сибири упал гигантский метеорит, шум падения которого был слышан в радиусе 300 км . В отличие от Аризонского и Чаббского метеоритов он не образовал кратера, однако мощная воздушная волна повалила деревья в радиусе 80 км , как будто метеорит взорвался в воздухе еще до падения на поверхность. Но несколько экспедиций в район падения, организованных Академией наук СССР, не нашли крупных осколков гигантского метеорита, которые должны были бы упасть на Землю.

Были выдвинуты две теории, каждая из которых считает взорвавшийся объект искусственным, а именно кораблем другого мира.

Согласно первой теории, это был космический корабль с термоядерным двигателем, взорвавшийся при попытке приземлиться. Это объяснило бы огромную мощность взрывной волны; но уровень радиоактивности в области падения слишком мал, что не согласуется с этой теорией. Энергии при взрыве ядерного двигателя космического корабля, эквивалентной по меньшей мере тысяче водородных бомб, было бы достаточно, чтобы район взрыва на сотни лет превратился в атомную пустыню. Но в настоящее время эта область тайги покрыта буйной растительностью.

Другое предположение сводится к тому, что корабль прилетел из антимира. За последнее десятилетие физики-ядерщики для каждой известной элементарной частицы теоретически предсказали античастицу и многие из них уже получили экспериментально. Отрицательно заряженному электрону соответствует положительно заряженный антиэлектрон, или позитрон, протону - антипротон, нейтрону - антинейтрон и так далее для более чем тридцати частиц.

При встрече любой частицы со своей античастицей происходит их исчезновение, аннигиляция, и вся масса превращается в излучение с выделением энергии, в тысячу раз большей, чем при реакциях расщепления или синтеза атомных ядер.

Античастицы необычны только в мире нормальных частиц, а в антимире те и другие меняются ролями. Но, так как впервые античастицы были открыты в составе космических лучей, которые сыплются дождем из межзвездного пространства, разумен вопрос: а почему бы не существовать целым звездам и даже галактикам, состоящим из антивещества?

Пока галактики и «антигалактики» разделены огромными расстояниями, они могут существовать, не вызывая гибель друг друга. Однако не исключено, что излучение сталкивающихся галактик (например, в созвездии Лебедя) обязано своей огромной мощностью катастрофическим процессам аннигиляции звезд и «антизвезд».

Теперь легко видеть, какая страшная драма могла разыграться над поверхностью Земли. Проведя в пути долгие годы, возможно всю жизнь, преодолев расстояние от одной звезды до другой, неизвестные астронавты, убедившись в том, что Земля обитаема, с нетерпением готовились к посадке. Но при погружении в плотные слои земной атмосферы (на высоте около 80 км ) антивещество их корабля вступило в реакцию с газами атмосферы - и звездное путешествие закончилось чудовищной вспышкой.

Этот сверхвзрыв не рассеял атомов «на ветер». Они аннигилировали, и при этом выделилась энергия, во много раз превосходящая энергию термоядерного взрыва. Могила космонавтов отмечена лишь сплошь поваленным лесом, и не осталось никаких следов самих пришельцев или их корабля.

Эта теория великолепно объясняет загадку Тунгусского метеорита и, если она соответствует действительности, предлагает нам пример одного из редких визитов из космоса.

И все-таки это только догадки; пока никто не может дать нам ответа на вопрос, посещалась ли Земля гостями из Космоса.

Загадка 5. Станет ли космический корабль с Земли загадочной «летающей тарелкой» для жителей другой планеты?

Ближайшая к нам планетная система звезды Проксимы Центавра по крайней мере в 7500 раз дальше Плутона, на расстоянии 42 триллиона км . (Конечно, у Проксимы Центавра может вообще не быть планет, а если и есть, то они могут оказаться необитаемыми.) Трудно представить себе те огромные расстояния, которые разделяют Солнце и ближайшие звезды.

В сфере радиусом 12 световых лет (113 триллионов км ) насчитывается 18 звезд, видимых невооруженным глазом, включая две всем хорошо известные - Сириус и Процион. Очевидно, для посещения любой из этих звезд межпланетные корабли непригодны. Даже если ракета разовьет скорость 1600 км/сек и пересечет орбиту Плутона через 40 часов с момента старта, для достижения Проксимы Центавра ей потребуется 3000 лет . Следовательно, необходимы значительно более быстрые межзвездные корабли. Но даже увеличение скорости в 10 раз сократит время путешествия лишь до 300 лет. Чтобы межзвездные полеты стали возможными, скорость ракеты должна приблизиться к скорости света. Космический корабль, летящий со скоростью света (300 000 км/сек ), достиг бы Плутона всего за пять часов, а звезды ближайшей соседки Проксима Центавра - за 38 000 часов или 4,3 года. Ракеты на химическом топливе не годятся, так как для развития скорости, хотя бы равной малой доле скорости света, необходимы резервуары для горючего размером с астероиды. Ракеты с ядерными и так называемыми электростатическими ионными двигателями могли бы развить большую, но опять-таки недостаточную скорость.

Только совершенно новые типы двигателей обеспечат нас настоящими межзвездными кораблями. Среди них, возможно, будет фотонная ракета.

Подобно тому как в электростатическом ракетном двигателе источником тяги служит поток ионов высокой скорости, фотонный двигатель излучает мощный пучок световых квантов, обеспечивающий реактивную силу. Правда, некоторые специалисты по ракетной технике считают, что эти проекты нереальны, ибо потребовался бы фотонный генератор невероятных размеров и мощности.

В последние годы бурно развиваются лазеры . Эти приборы генерируют необычайно мощные пучки излучения (видимого, ультрафиолетового или инфракрасного). Ежедневно мы слышим и читаем сообщения о новых подвигах лазеров: ими в доли секунды прожигают отверстия в алмазах, режут пластинки стали. Инженеры не сомневаются, что им удастся в конце концов сосредоточить в луче лазера мощность, измеряемую миллионами ватт.

Космический корабль, оснащенный лазерным фотонным двигателем, способен развивать скорость, равную 90 % скорости света. Тогда путешествие до Проксимы Центавра займет меньше пяти, а до Сириуса (расстояние 8,6 световых лет) - около девяти лет. Если бы космонавты добровольно согласились провести свою жизнь на борту космического корабля, то можно было бы посетить все звезды в радиусе 25 световых лет в надежде найти другую планетную систему и один из миллионов «двойников» Земли, населенный разумными существами.

Но поможет ли это?..

Загадка 6. Какова вероятность обнаружить жизнь в «ближайших» окрестностях Солнца, доступных фотонной ракете?

Из всего сказанного выше следует, что эта вероятность практически равна нулю. Если оценка Струве верна и число подобных Земле планет в нашей Галактике действительно составляет один миллион, то это означает, что в среднем из 200 000 звезд только одной посчастливилось быть обладательницей семейства планет. К сожалению, как следует из расчетов Хорнера (Гейдельбергская обсерватория), в сфере радиусом 160 световых лет содержится всего 10 звезд с планетными системами. Значит, только при фантастическом везении «поблизости» от нас существует звезда, - может быть даже, это Проксима Центавра - с обитаемой планетой.

Если увеличить оценку Струве в 100 раз, то нашим космонавтам придется обследовать 2000 звезд, прежде чем найдется одна с обитаемой планетой. Более того, их путешествие будет продолжаться по меньшей мере 100 лет - больше продолжительности их жизни. Итак, из-за значительной длительности полетов, казалось бы, невозможно успешно справиться с задачей поисков братских миров. Очевидно, космонавтам не хватит жизни, чтобы преодолеть даже десятую часть пути к столь далеким звездам, а тем более посетить их и возвратиться на Землю.

Однако одно обстоятельство отодвигает этот временнóй барьер.

Загадка 7. Смогут ли космонавты преодолеть расстояние в 1000 световых лет за один год?

Если бы космический корабль смог развить скорость, равную, скажем, 99 % скорости света или больше, знаменитый парадокс «замедления времени» теории относительности Эйнштейна устранил бы временной барьер. Теоретически для человека, движущегося вместе с ракетой с такой скоростью, время в буквальном смысле замедлит ход.

В то время как часы на Земле отсчитают 1000 лет, для команды корабля пройдет 10 лет, а то и меньше, в зависимости от того, насколько его скорость близка к скорости света. Поэтому, достигнув планеты, они станут старше лишь на несколько лет. Возвращаясь с той же скоростью, они прилетят на Землю мало постаревшими, но не найдут своих родных и друзей, давно уже умерших.

Загадка 8. Сможет ли человек посещать другие миры на сверхсветовых кораблях?

Из теории относительности следует, что, если скорость тела стремится к скорости света (которая предполагается постоянной), его масса стремится к бесконечности, так что физически невозможно продолжать ускорение объекта до более высокой скорости.

Но если бы скорость света перестала играть роль сдерживающего фактора для наших космических кораблей, то солнечная система стала бы прудом, Млечный Путь - озером, межгалактическое пространство - морем, а вся Вселенная - океаном. Достаточно большая скорость сократит продолжительность путешествий со столетий до нескольких месяцев и лет.

Однако преодоление космических расстояний - чудовищно трудная задача. Даже световой год - недостаточно большая единица, когда приходится иметь дело с удаленными объектами. Все звезды, видимые на ночном небе, находятся в нашей Галактике в пределах 100 000 световых лет. Но уже ближайшая галактика в созвездии Андромеды удалена от нас на 2 300 000 световых лет, а другие миллионы и миллионы галактик - на миллиарды световых лет. Астрономам неудобно пользоваться этой единицей, и они ввели новую - парсек .

Слово «парсек» образовано из начальных слогов двух слов - параллакс и секунда. Параллакс - это величина углового смещения изображения звезды относительно звездного фона при наблюдении из диаметрально противоположных точек земной орбиты, расстояние между которыми 300 млн. км . Если параллакс (видимое смещение) равен 1 секунде дуги, то расстояние до наблюдаемого объекта равно 1 парсеку. Один парсек соответствует 3,26 световых года, или 31 триллиону км . Как видно, парсек ненамного больше светового года, поэтому астрономы часто пользуются производными от парсека единицами - килопарсеком (1000 парсек) и мегапарсеком (1 000 000 парсек). Туманность Андромеды отстоит от нас на 700 килопарсек, а группа галактик в созвездии Волос Вероники - на 25 мегапарсек (почти 90 000 000 световых лет).

При помощи радиотелескопов и 5-метрового Паломарского рефлектора границы наблюдаемой Вселенной были раздвинуты до 7,5 млрд. световых лет, то есть до 2300 мегапарсек. Таким образом, мегапарсек как единица расстояния тоже становится непригодной, и некоторые астрономы делают еще один шаг вперед и определяют размеры видимой части Вселенной величиной 2,3 гигапарсек (приставка гига означает миллиард).

Скорость, которая потребовалась бы для полета к самым далеким из известных галактик, выражается фантастическим числом; расстояние получается умножением 7,5 млрд. световых лет на тот путь, который проходит свет за год (10 триллионов км ), и составляет 75 · 10 21 км . Двигаясь в миллион раз быстрее света, космический корабль достиг бы столь удаленных объектов лишь через 750 лет.

Очевидно, даже устранение всех релятивистских ограничений не сделает приятной прогулкой такие полеты в Большой Вселенной и даже сверхсветовые корабли позволят исследовать лишь нашу собственную сравнительно небольшую Галактику и вряд ли - объекты за ее пределами.

Это в какой-то степени ответ тем, кто созерцая мириады миров, возможно обитаемых, спросит, подобно Теллеру: «Где же вы?» Нас могли бы посетить на сверхскоростных ракетах только уроженцы нашей Галактики, и даже тогда им пришлось бы потрудиться, чтобы среди каждых 200 000 звезд найти одну, окруженную планетами. Отсюда логически следует вывод, что любая планета, в том числе и Земля, не будет посещаться слишком часто за все 10 млрд. лет существования жизни.

Сможем ли мы на самом деле добраться до неведомых планет за пределами Солнечной системы? Как это вообще возможно?

Фантасты и кинематографисты, конечно, молодцы, хорошо поработали. В красочные истории, где человек покоряет самые дальние уголки космоса, действительно хочется верить. К сожалению, прежде чем эта картинка станет явью, нам придется преодолеть немало ограничений. Например, законы физики, какими мы их видим сейчас.

Но! В последние годы появилось несколько волонтерских и финансируемых частными лицами организаций (Фонд Tau Zero , проект Icarus , проект Breakthrough Starshot), каждая из которых ставит целью создание транспорта для межзвездных полетов и приблизить человечество к покорению Вселенной. Их надежду и веру в успех укрепляют позитивные новости, например, на орбите звезды Проксима-Центавра планеты размером с Землю.

Создание межзвездного космического аппарата станет одной из тем для обсуждения на Всемирном саммите BBC Future «Идеи, которые меняют мир» в Сиднее в ноябре. Сможет ли человек отправиться в другие галактики? И если да, то какие виды космических кораблей нам для этого понадобятся?

Куда бы нам отправиться?


А куда лететь не стоит? Во Вселенной звезд больше , чем песчинок на Земле — около 70 секстиллионов (это 22 нуля после семерки) — и, по оценкам ученых, миллиарды из них имеют на орбитах от одной до трех планет в так называемой «зоне Златовласки»: на них не слишком холодно и не слишком жарко. В самый раз .

С самого начала и до сих пор лучшим претендентом для первого межзвездного полета является наш ближайший сосед — тройная звездная система Альфа Центавра. Она находится на расстоянии 4,37 световых лет от Земли. В этом году астрономы Европейской южной обсерватории обнаружили планету размером с Землю, вращающуюся вокруг красного карлика Проксима Центавра из этого созвездия. Масса планеты, названной Проксима b, как минимум в 1,3 раза больше земной, и она имеет очень короткий период обращения вокруг своей звезды - всего 11 земных дней. Но все равно эта новость чрезвычайно взволновала астрономов и охотников за экзопланетами, ведь температурный режим Проксимы b подходит для существования воды в жидком виде, а это - серьезный плюс к возможной обитаемости.

Но есть и недостатки: мы не знаем, имеет ли Проксима b атмосферу, и, учитывая ее близость к Проксима Центавра (ближе, чем Меркурий к Солнцу), она, вероятно, будет подвергаться воздействию выбросов звездной плазмы и радиации. И она так заперта приливными силами, что всегда обращена к звезде одной стороной. Это, конечно, может полностью изменить наши представления о дне и ночи.

И как мы туда попадем?


Это вопрос на 64 триллиона долларов. Даже на максимальной скорости, которую позволяют развить современные технологии, нам до Проксимы Б 18 тысяч лет. И высока вероятность, что добравшись до цели мы встретим там… наших потомков в Земли, которые уже колонизировали новую планету и забрали всю славу себе. Поэтому глубокие умы и бездонные карманы ставят себе амбициозную задачу: найти более быстрый способ пересекать огромные расстояния.

Breakthrough Starshot - это космический проект с бюджетом в размере 100 миллионов долларов, он финансируется российским миллиардером Юрием Мильнером. Breakthrough Starshot сосредоточился на создании крошечных беспилотных зондов со световыми парусами, подгоняемых мощным наземным лазером. Идея в том, что космический аппарат достаточно малого веса (едва ли 1 грамм) со световым парусом можно будет регулярно ускорять мощным световым лучом с Земли примерно до скорости в одну пятую от скорости света. Такими темпами нанозонды достигнут Альфа Центавра примерно за 20 лет.

Разработчики проекта Breakthrough Starshot рассчитывают на миниатюризацию всех технологий, ведь крошечный космический зонд должен нести с собой камеру, подруливающие устройства, источник питания, средства связи и навигационное оборудование. Все для того, чтобы по прибытии сообщить: «Смотрите, я здесь. А она совсем не вертится». Миллер надеется, что это сработает и заложит основу для следующего, более сложного этапа межзвездных передвижений: путешествия человека.

А что же варп-двигатели?

Да, в сериале Star Trek это все выглядит очень просто: включил варп-двигатель и полетел быстрее скорости света. Но все, что мы в настоящее время знаем о законах физики, говорит нам: путешествия со скоростью выше скорости света, или даже равной ей, невозможны . Но ученые не сдаются: NASA вдохновилось другим захватывающим двигателем из научной фантастики и запустило проект NASA Evolutionary Xenon Thruster (сокращено NEXT) — ионный двигатель, который сможет ускорять космические корабли до скорости 145 тысяч км/ч, используя лишь одну фракцию топлива для обычной ракеты.

Но даже на таких скоростях мы не сможем улететь далеко от Солнечной системы за одну человеческую жизнь. Пока мы не разберемся, как работать с пространством-временем, межзвездные путешествия будет протекать очень, очень медленно. Возможно, уже пора начать воспринимать то время, которое галактические странники проведут на борту межзвездного корабля, просто как жизнь, а не как поездку на «космическом автобусе» от пункта А к пункту Б.

Как мы выживем в межзвездном путешествии?


Варп-двигатели и ионные моторы - это, конечно, очень круто, но во всем этом будет мало проку, если наши межзвездные странники погибнут от голода, холода, обезвоживания или отсутствия кислорода еще до того, как покинут пределы Солнечной системы. Исследователь Рейчел Армстронг утверждает, что нам пора задумываться о создании настоящей экосистемы для межзвездного человечества.

«Мы переходим от индустриального взгляда к экологическому видению реальности», — заявляет Армстронг.

Армстронг — профессор экспериментальной архитектуры в Университете Ньюкасла в Великобритании — говорит о таком понятии как «worlding»: «Это о пространстве обитания, а не только о дизайне объекта». Сегодня внутри космического корабля или станции все стерильно и выглядит как промышленный объект. Армстронг считает, что вместо этого мы должны подумать об экологической составляющей космических судов: о растениях, которые мы сможем выращивать на борту, и даже о видах почв, которые возьмем с собой. В будущем, как она предполагает , космолеты будут выглядеть как гигантские биомы, полные органической жизни, а не сегодняшние холодные, металлические ящики.

А мы не можем просто проспать всю дорогу?


Криосон и гибернация - это, конечно хорошее решение довольно неприятной проблемы: как сохранить людей живыми во время путешествия, которое длится гораздо дольше, чем сама человеческая жизнь. По крайней мере, в кино так делают . И в мире полно крио-оптимистов: Фонд продления жизни Алькор хранит множество крио-консервированных тел и голов людей, которые надеются, что наши потомки научатся безопасно размораживать людей и избавляться от неизлечимых ныне заболеваний, но в настоящее время таких технологий не существует.

В фильмах типа «Интерстеллар» и в книгах наподобие «Seveneves» Нила Стивенсона озвучивается идея отправить в космос замороженные эмбрионы, которые могли бы пережить даже самый длительный полет, потому что ни есть, ни пить, ни дышать им не нужно. Но это поднимает проблему «курицы и яйца»: кто-то ведь должен ухаживать за этим зарождающимся человечеством в несознательном возрасте.

Так это все реально?

«С самого зарождения человечества мы смотрели на звезды и обращали к ним наши надежды и страхи, тревоги и мечты», — говорит Рэйчел Армстронг .

С запуском новых инженерных проектов, таких как Breakthrough Starshot, «мечта становится реальным экспериментом».

Наш читатель Никита Агеев спрашивает: в чем основная проблема межзвездных перелетов? Ответ, как и , потребует большой статьи, хотя на вопрос можно ответить и единственным символом: c .

Скорость света в вакууме, c, равна примерно тремстам тысячам километров в секунду, и превысить ее невозможно. Следовательно, нельзя и добраться до звезд быстрее, чем за несколько лет (свет идет 4,243 года до Проксимы Центавра, так что космический корабль не сможет прибыть еще быстрее). Если добавить время на разгон и торможение с более-менее приемлемым для человека ускорением, то получится около десяти лет до ближайшей звезды.

В каких условиях лететь?

И этот срок уже существенное препятствие сам по себе, даже если отвлечься от вопроса «как разогнаться до скорости, близкой к скорости света». Сейчас не существует космических кораблей, которые позволяли бы экипажу автономно жить в космосе столько времени — космонавтам постоянно привозят свежие припасы с Земли. Обычно разговор о проблемах межзвездных перелетов начинают с более фундаментальных вопросов, но мы начнем с сугубо прикладных проблем.

Даже спустя полвека после полета Гагарина инженеры не смогли создать для космических кораблей стиральную машину и достаточно практичный душ, а рассчитанные на условия невесомости туалеты ломаются на МКС с завидной регулярностью . Перелет хотя бы к Марсу (22 световые минуты вместо 4 световых лет) уже ставит перед конструкторами сантехники нетривиальную задачу: так что для путешествия к звездам потребуется как минимум изобрести космический унитаз с двадцатилетней гарантией и такую же стиральную машину.

Воду для стирки, мытья и питья тоже придется либо брать с собой, либо использовать повторно. Равно как и воздух, да и еду тоже необходимо либо запасать, либо выращивать на борту. Эксперименты по созданию замкнутой экосистемы на Земле уже проводились, однако их условия все же сильно отличались от космических хотя бы наличием гравитации. Человечество умеет превращать содержимое ночного горшка в чистую питьевую воду, но в данном случае требуется суметь сделать это в невесомости, с абсолютной надежностью и без грузовика расходных материалов: брать к звездам грузовик картриджей для фильтров слишком накладно.

Стирка носков и защита от кишечных инфекций могут показаться слишком банальными, «нефизическими» ограничениями на межзвездные полеты - однако любой опытный путешественник подтвердит, что «мелочи» вроде неудобной обуви или расстройства желудка от незнакомой пищи в автономной экспедиции могут обернуться угрозой для жизни.

Решение даже элементарных бытовых проблем требует столь же серьезной технологической базы, как и разработка принципиально новых космических двигателей. Если на Земле изношенную прокладку в бачке унитаза можно купить в ближайшем магазине за два рубля, то уже на марсианском корабле нужно предусмотреть либо запас всех подобных деталей, либо трехмерный принтер для производства запчастей из универсального пластикового сырья.

В ВМС США в 2013 году всерьез занялись трехмерной печатью после того, как оценили затраты времени и средств на ремонт боевой техники традиционными методами в полевых условиях. Военные рассудили, что напечатать какую-нибудь редкую прокладку для снятого с производства десять лет назад узла вертолета проще, чем заказать деталь со склада на другом материке.

Один из ближайших соратников Королева, Борис Черток, писал в своих мемуарах «Ракеты и люди» о том, что в определенный момент советская космическая программа столкнулась с нехваткой штепсельных контактов. Надежные соединители для многожильных кабелей пришлось разрабатывать отдельно.

Кроме запчастей для техники, еды, воды и воздуха космонавтам потребуется энергия. Энергия будет нужна двигателю и бортовому оборудованию, так что отдельно придется решить проблему с мощным и надежным ее источником. Солнечные батареи не годятся хотя бы по причине удаленности от светил в полете, радиоизотопные генераторы (они питают «Вояджеры» и «Новые горизонты») не дают требуемой для большого пилотируемого корабля мощности, а полноценные ядерные реакторы для космоса до сих пор делать не научились.

Советская программа по созданию спутников с ядерной энергоустановкой была омрачена международным скандалом после падения аппарата «Космос-954» в Канаде, а также рядом отказов с менее драматичными последствиями; аналогичные работы в США свернули еще раньше. Сейчас созданием космической ядерной энергоустановки намерены заняться в Росатоме и Роскосмосе, но это все-таки установки для ближних перелетов, а не многолетнего пути к другой звездной системе.

Возможно, вместо ядерного реактора в будущих межзвездных кораблях найдут применение токамаки. О том, насколько сложно хотя бы правильно определить параметры термоядерной плазмы, в МФТИ этим летом . Кстати, проект ITER на Земле успешно продвигается: даже те, кто поступил на первый курс, сегодня имеют все шансы приобщиться к работе над первым экспериментальным термоядерным реактором с положительным энергетическим балансом.

На чем лететь?

Для разгона и торможения межзвездного корабля обычные ракетные двигатели не годятся. Знакомые с курсом механики, который читают в МФТИ в первом семестре, могут самостоятельно рассчитать то, сколько топлива потребуется ракете для набора хотя бы ста тысяч километров в секунду. Для тех, кто еще не знаком с уравнением Циолковского, сразу озвучим результат - масса топливных баков получается существенно выше массы Солнечной системы.

Уменьшить запас топлива можно за счет повышения скорости, с которой двигатель выбрасывает рабочее тело, газ, плазму или что-то еще, вплоть до пучка элементарных частиц. В настоящее время для перелетов автоматических межпланетных станций в пределах Солнечной системы или для коррекции орбиты геостационарных спутников активно используют плазменные и ионные двигатели, но у них есть ряд других недостатков. В частности, все такие двигатели дают слишком малую тягу, ими пока нельзя придать кораблю ускорение в несколько метров на секунду в квадрате.

Проректор МФТИ Олег Горшков - один из признанных экспертов в области плазменных двигателей. Двигатели серии СПД - производят в ОКБ «Факел», это серийные изделия для коррекции орбиты спутников связи.

В 1950-е годы разрабатывался проект двигателя, который бы использовал импульс ядерного взрыва (проект Orion), но и он далек от того, чтобы стать готовым решением для межзвездных полетов. Еще менее проработан проект двигателя, который использует магнитогидродинамический эффект, то есть разгоняется за счет взаимодействия с межзвездной плазмой. Теоретически, космический корабль мог бы «засасывать» плазму внутрь и выбрасывать ее назад с созданием реактивной тяги, но тут возникает еще одна проблема.

Как выжить?

Межзвездная плазма - это прежде всего протоны и ядра гелия, если рассматривать тяжелые частицы. При движении со скоростями порядка сотни тысяч километров в секунду все эти частицы приобретают энергию в мегаэлектронвольты или даже десятки мегаэлектронвольт - столько же, сколько имеют продукты ядерных реакций. Плотность межзвездной среды составляет порядка ста тысяч ионов на кубический метр, а это значит, что за секунду квадратный метр обшивки корабля получит порядка 10 13 протонов с энергиями в десятки МэВ.

Один электронвольт, эВ , это та энергия, которую приобретает электрон при пролете от одного электрода до другого с разностью потенциалов в один вольт. Такую энергию имеют кванты света, а кванты ультрафиолета с большей энергией уже способны повредить молекулы ДНК. Излучение или частицы с энергиями в мегаэлектронвольты сопровождает ядерные реакции и, кроме того, само способно их вызывать.

Подобное облучение соответствует поглощенной энергии (в предположении, что вся энергия поглощается обшивкой) в десятки джоулей. Причем эта энергия придет не просто в виде тепла, а может частично уйти на инициацию в материале корабля ядерных реакций с образованием короткоживущих изотопов: проще говоря, обшивка станет радиоактивной.

Часть налетающих протонов и ядер гелия можно отклонять в сторону магнитным полем, от наведенной радиации и вторичного излучения можно защищаться сложной оболочкой из многих слоев, однако эти проблемы тоже пока не имеют решения. Кроме того, принципиальные сложности вида «какой материал в наименьшей степени будет разрушаться при облучении» на стадии обслуживания корабля в полете перейдут в частные проблемы - «как открутить четыре болта на 25 в отсеке с фоном в пятьдесят миллизиверт в час».

Напомним, что при последнем ремонте телескопа «Хаббл» у астронавтов поначалу не получилось открутить четыре болта, которые крепили одну из фотокамер. Посовещавшись с Землей, они заменили ключ с ограничением крутящего момента на обычный и приложили грубую физическую силу. Болты стронулись с места, камеру успешно заменили. Если бы прикипевший болт при этом сорвали, вторая экспедиция обошлась бы в полмиллиарда долларов США. Или вовсе бы не состоялась.

Нет ли обходных путей?

В научной фантастике (часто более фантастической, чем научной) межзвездные перелеты совершаются через «подпространственные туннели». Формально, уравнения Эйнштейна, описывающие геометрию пространства-времени в зависимости от распределенных в этом пространстве-времени массы и энергии, действительно допускают нечто подобное - вот только предполагаемые затраты энергии удручают еще больше, чем оценки количества ракетного топлива для полета к Проксиме Центавра. Мало того, что энергии нужно очень много, так еще и плотность энергии должна быть отрицательной.

Вопрос о том, нельзя ли создать стабильную, большую и энергетически возможную «кротовую нору» - привязан к фундаментальным вопросам об устройстве Вселенной в целом. Одной из нерешенных физических проблем является отсутствие гравитации в так называемой Стандартной модели - теории, описывающей поведение элементарных частиц и три из четырех фундаментальных физических взаимодействий. Абсолютное большинство физиков довольно скептически относится к тому, что в квантовой теории гравитации найдется место для межзвездных «прыжков через гиперпространство», но, строго говоря, попробовать поискать обходной путь для полетов к звездам никто не запрещает.

Современные технологии и открытия выводят освоение космоса на совершенно иной уровень, однако межзвездные перелеты пока еще остаются мечтой. Но так ли она нереальна и недостижима? Что мы можем уже сейчас и чего ждать в ближайшем будущем?

C помощью телескопа «Кеплер» астрономы уже обнаружили 54 потенциально обитаемые экзопланеты. Эти далекие миры находятся в обитаемой зоне, т.е. на определенном расстоянии от центральной звезды, позволяющем поддерживать на поверхности планеты воду в жидком виде.

Однако ответ на главный вопрос, одиноки ли мы во Вселенной, получить затруднительно – из-за огромной дистанции, разделяющей Солнечную систему и наших ближайших соседей.

Например, «перспективная» планета Gliese 581g находится на расстоянии в 20 световых лет – это достаточно близко по космическим меркам, но пока слишком далеко для земных инструментов.

Обилие экзопланет в радиусе 100 и менее световых лет от Земли и огромный научный и даже цивилизационный интерес, которые они представляют для человечества, заставляют по-новому взглянуть на доселе фантастическую идею межзвездных перелетов.

Рис. 1. Ближайшие к нашей Солнечной системе звезды.

Полет к другим звездам – это, разумеется, вопрос технологий. Более того, существуют несколько возможностей для достижения столь далекой цели, и выбор в пользу того или иного способа еще не сделан.

Дорогу беспилотникам

Человечество уже отправляло в космос межзвездные аппараты: зонды Pioneer и Voyager. В настоящее время они покинули пределы Солнечной системы, однако их скорость не позволяет говорить о сколь-нибудь быстром достижении цели. Так, Voyager 1, движущийся со скоростью около 17 км/с, даже к ближайшей к нам звезде Проксима Центавра (4,2 световых года) будет лететь невероятно долгий срок – 17 тысяч лет.

Очевидно, что с современными ракетными двигателями мы никуда дальше Солнечной системы не выберемся: для транспортировки 1 кг груза даже к недалекой Проксиме Центавра нужны десятки тысяч тонн топлива. При этом с ростом массы корабля увеличивается количество необходимого топлива, и для его транспортировки нужно дополнительное горючее. Замкнутый круг, ставящий крест на баках с химическим топливом – постройка космического судна весом в миллиарды тонн представляется совершенно невероятной затеей. Простые вычисления по формуле Циолковского демонстрируют, что для ускорения космических аппаратов с ракетным двигателем на химическом топливе до скорости примерно в 10% скорости света потребуется больше горючего, чем доступно в известной вселенной.

Реакция термоядерного синтеза производит энергии на единицу массы в среднем в миллион раз больше, чем химические процессы сгорания. Именно поэтому в 1970-х годах в НАСА обратили внимание на возможность применения термоядерных ракетных двигателей. Проект беспилотного космического корабля Дедал предполагал создание двигателя, в котором небольшие гранулы термоядерного топлива будут подаваться в камеру сгорания и поджигаться пучками электронов. Продукты термоядерной реакции вылетают из сопла двигателя и придают кораблю ускорение.

Рис. 2. Космический корабль Дедал в сравнении с небоскребом Эмпайр стейт Билдинг.

Дедал должен был взять на борт 50 тыс. тонн топливных гранул диаметром 40 и 20 мм. Гранулы состоят из ядра с дейтерием и тритием и оболочки из гелия-3. Последний составляет лишь 10–15 % от массы топливной гранулы, но, собственно, и является топливом. Гелия-3 в избытке на Луне, а дейтерий широко используется в атомной промышленности.

Дейтериевое ядро служит детонатором для зажигания реакции синтеза и провоцирует мощную реакцию с выбросом реактивной плазменной струи, которая управляется мощным магнитным полем. Основная молибденовая камера сгорания двигателя Дедала должна была иметь вес более 218 тонн, камера второй ступени – 25 тонн. Магнитные сверхпроводящие катушки тоже под стать огромному реактору: первая весом 124,7 т, а вторая – 43,6 т. Для сравнения: сухая масса шаттла менее 100 т.

Полет Дедала планировался двухэтапным: двигатель первой ступени должен был проработать более 2 лет и сжечь 16 млрд топливных гранул. После отделения первой ступени почти два года работал двигатель второй ступени. Таким образом, за 3,81 года непрерывного ускорения Дедал достиг бы максимальной скорости в 12,2% скорости света.

Расстояние до звезды Барнарда (5,96 световых лет) такой корабль преодолеет за 50 лет и сможет, пролетая сквозь далекую звездную систему, передать по радиосвязи на Землю результаты своих наблюдений. Таким образом, вся миссия займет около 56 лет.

Рис. 3. Тор Стенфорда – колоссальное сооружение с целыми городами внутри обода.

Несмотря на большие сложности с обеспечением надежности многочисленных систем Дедала и его огромной стоимостью, этот проект реализуем на современном уровне технологий. Более того, в 2009 году команда энтузиастов возродила работу над проектом термоядерного корабля. В настоящее время проект Икар включает 20 научных тем по теоретической разработке систем и материалов межзвездного корабля.

Таким образом, уже сегодня возможны беспилотные межзвездные полеты на расстояние до 10 световых лет, которые займут около 100 лет полета плюс время на путешествие радиосигнала обратно на Землю. В этот радиус укладываются звездные системы Альфа Центавра, Звезда Барнарда, Сириус, Эпсилон Эридана, UV Кита, Росс 154 и 248, CN Льва, WISE 1541–2250. Как видим, рядом с Землей достаточно объектов для изучения с помощью беспилотных миссий. Но если роботы найдут что-то действительно необычное и уникальное, например, сложную биосферу? Сможет ли отправиться к далеким планетам экспедиция с участием людей?

Полет длиною в жизнь

Если беспилотный корабль мы можем начинать строить уже сегодня, то с пилотируемым дело обстоит сложнее. Прежде всего остро стоит вопрос времени полета. Возьмем ту же звезду Барнарда. К пилотируемому полету космонавтов придется готовить со школьной скамьи, поскольку даже если старт с Земли состоится в их 20-летие, то цели полета корабль достигнет к 70-летию или даже 100-летию (учитывая необходимость торможения, в котором нет нужды в беспилотном полете). Подбор экипажа в юношеском возрасте чреват психологической несовместимостью и межличностными конфликтами, а возраст в 100 лет не дает надежду на плодотворную работу на поверхности планеты и на возвращение домой.

Однако есть ли смысл возвращаться? Многочисленные исследования НАСА приводят к неутешительному выводу: длительное пребывание в невесомости необратимо разрушит здоровье космонавтов. Так, работа профессора биологии Роберта Фиттса с космонавтами МКС показывает,

что даже несмотря на активные физические упражнения на борту космического корабля, после трехлетней миссии на Марс крупные мышцы, например икроножные, станут на 50% слабее. Аналогично снижается и минеральная плотность костной ткани. В результате трудоспособность и выживаемость в экстремальных ситуациях уменьшается в разы, а период адаптации к нормальной силе тяжести составит не менее года.

Полет же в невесомости на протяжении десятков лет поставит под вопрос сами жизни космонавтов. Возможно, человеческий организм сможет восстановиться, например, в процессе торможения с постепенно нарастающей гравитацией. Однако риск гибели все равно слишком высок и требует радикального решения.

Сложной остается и проблема радиации. Даже вблизи Земли (на борту МКС) космонавты находятся не более полугода из-за опасности радиационного облучения. Межпланетный корабль придется оснастить тяжелой защитой, но и при этом остается вопрос влияния радиации на организм человека. В частности, на риск онкологических заболеваний, развитие которых в невесомости практически не изучено. В начале этого года ученый Красимир Иванов из Германского аэрокосмического центра в Кельне опубликовал результаты интересного исследования поведения клеток меланомы (самой опасной формы рака кожи) в невесомости. По сравнению с раковыми клетками, выращенными при нормальной силе тяжести, клетки, проведшие в невесомости 6 и 24 часа, менее склонны к метастазам. Это вроде бы хорошая новость, но только на первый взгляд. Дело в том, что такой «космический» рак способен находиться в состоянии покоя десятилетия, и неожиданно масштабно распространяться при нарушении работы иммунной системы. Кроме этого, исследование дает понять, что мы еще мало знаем о реакции человеческого организма на длительное пребывание в космосе. Сегодня космонавты, здоровые сильные люди, проводят там слишком мало времени, чтобы переносить их опыт на длительный межзвездный перелет.

Рис. 4. Проект Биосфера-2 начинался с красивой, тщательно подобранной и пышущей здоровьем экосистемы…

К сожалению, решить проблему невесомости на межзвездном корабле не так просто. Доступная нам возможность создания искусственной силы тяжести при помощи вращения жилого модуля имеет ряд сложностей. Чтобы создать земную гравитацию, даже колесо диаметром 200 м придется вращать со скоростью 3 оборота в минуту. При таком быстром вращении сила Кариолиса будет создавать совершенно непереносимые для вестибулярного аппарата человека нагрузки, вызывая тошноту и острые приступы морской болезни. Единственное решение этой проблемы – Тор Стенфорда, разработанный учеными Стенфордского университета в 1975 году. Это – огромное кольцо диаметром 1,8 км, в котором могли бы жить 10 тыс. космонавтов. Благодаря своим размерам оно обеспечивает силу тяжести на уровне 0.9–1,0 g и вполне комфортное проживание людей. Однако даже на скорости вращения ниже, чем один оборот в минуту, люди все равно будут испытывать легкий, но ощутимый дискомфорт. При этом если подобный гигантский жилой отсек будет построен, даже небольшие сдвиги в развесовке тора повлияют на скорость вращения и вызовут колебания всей конструкции.

Рис. 5. …а закончился экологической катастрофой.

В любом случае корабль на 10 тыс. человек – сомнительная затея.

Для создания надежной экосистемы для такого числа людей нужно огромное количество растений, 60 тыс. кур, 30 тыс. кроликов и стадо крупного рогатого скота. Только это может обеспечить диету на уровне 2400 калорий в день. Однако все эксперименты по созданию таких замкнутых экосистем неизменно заканчиваются провалом. Так, в ходе крупнейшего эксперимента «Биосфера-2» компании Space Biosphere Ventures была построена сеть герметичных зданий общей площадью 1,5 га с 3 тыс. видами растений и животных. Вся экосистема должна была стать самоподдерживающейся маленькой «планетой», в которой жили 8 человек.

Эксперимент длился 2 года, но уже после нескольких недель начались серьезные проблемы: микроорганизмы и насекомые стали неконтролируемо размножаться, потребляя кислород и растения в слишком больших количествах, также оказалось, что без ветра растения стали слишком хрупкими.

В результате локальной экологической катастрофы люди начали терять вес, количество кислорода снизилось с 21% до 15%, и ученым пришлось нарушить условия эксперимента и поставлять восьмерым «космонавтам» кислород и продукты.

Таким образом, создание сложных экосистем представляется ошибочным и опасным путем обеспечения экипажа межзвездного корабля кислородом и питанием. Для решения этой проблемы понадобятся специально сконструированные организмы с измененными генами, способные питаться светом, отходами и простыми веществами. Например, большие современные цеха по производству пищевой водоросли хлореллы могут производить до 40 т суспензии в сутки. Один полностью автономный биореактор весом несколько тонн может производить до 300 л суспензии хлореллы в сутки, чего достаточно для питания экипажа в несколько десятков человек. Генетически модифицированная хлорелла могла бы не только удовлетворять потребности экипажа в питательных веществах, но и перерабатывать отходы, включая углекислый газ. Сегодня процесс генетического инжиниринга микроводорослей стал обычным делом, и существуют многочисленные образцы, разработанные для очистки сточных вод, выработки биотоплива и т.д.

Замороженный сон

Практически все вышеперечисленные проблемы пилотируемого межзвездного полета могла бы решить одна очень перспективная технология – анабиоз или как его еще называют криостазис. Анабиоз – это замедление процессов жизнедеятельности человека как минимум в несколько раз. Если удастся погрузить человека в такую искусственную летаргию, замедляющую обмен веществ в 10 раз, то за 100-летний полет он постареет во сне всего на 10 лет. При этом облегчается решение проблем питания, снабжения кислородом, психических расстройств, разрушения организма в результате воздействия невесомости. Кроме того, защитить отсек с анабиозными камерами от микрометеоритов и радиации проще, чем обитаемую зону большого объема.

К сожалению, замедление процессов жизнедеятельности человека – это чрезвычайно сложная задача. Но в природе существуют организмы, способные впадать в спячку и увеличивать продолжительность своей жизни в сотни раз. Например, небольшая ящерица под названием сибирский углозуб способна впадать в спячку в тяжелые времена и десятилетиями оставаться в живых, даже будучи вмороженной в глыбу льда с температурой минус 35–40°С. Известны случаи, когда углозубы проводили в спячке около 100 лет и, как ни в чем не бывало, оттаивали и убегали от удивленных исследователей. При этом обычная «непрерывная» продолжительность жизни ящерицы не превышает 13 лет. Удивительная способность углозуба объясняется тем, что его печень синтезирует большое количество глицерина, почти 40 % от веса тела, что защищает клетки от низких температур.

Рис. 6. Биореактор для выращивания генетически модифицированных микроводорослей и других микроорганизмов может решить проблему питания и переработки отходов.

Главное препятствие для погружения человека в криостазис – вода, из которой на 70% состоит наше тело.

При замерзании она превращается в кристаллики льда, увеличиваясь в объеме на 10%, из-за чего разрывается клеточная мембрана. Кроме того, по мере замерзания растворенные внутри клетки вещества мигрируют в оставшуюся воду, нарушая внутриклеточные ионообменные процессы, а также организацию белков и других межклеточных структур . В общем, разрушение клеток во время замерзания делают невозможным возвращение человека к жизни.

Однако существует перспективный путь решения этой проблемы – клатратные гидраты . Они были обнаружены в далеком 1810 году, когда британский ученый сэр Хэмфри Дэви подал в воду хлор под высоким давлением и стал свидетелем образования твердых структур. Это и были клатратные гидраты – одна из форм водяного льда, в который включен посторонний газ. В отличие от кристаллов льда, клатратные решетки менее твердые, не имеют острых граней, зато имеют полости, в которые могут «спрятаться» внутриклеточные вещества. Технология клатратного анабиоза была бы проста: инертный газ, например, ксенон или аргон, температура чуть ниже нуля, и клеточный метаболизм начинает постепенно замедляться, пока человек не впадает в криостазис. К сожалению, для образования клатратных гидратов требуется высокое давление (около 8 атмосфер) и весьма высокая концентрация газа, растворенного в воде. Как создать такие условия в живом организме, пока неизвестно, хотя некоторые успехи в этой области есть. Так, клатраты способны защитить ткани сердечной мышцы от разрушения митохондрий даже при криогенных температурах (ниже 100 градусов Цельсия), а также предотвратить повреждение клеточных мембран. Об экспериментах по клатратному анабиозу на людях речь пока не идет, поскольку коммерческий спрос на технологии криостазиса невелик и исследования на эту тему проводятся в основном небольшими компаниями, предлагающими услуги по заморозке тел умерших.

Полет на водороде

В 1960 году физик Роберт Бассард предложил оригинальную концепцию прямоточного термоядерного двигателя, который решает многие проблемы межзвездного перелета. Суть заключается в использовании водорода и межзвездной пыли, присутствующих в космическом пространстве. Космический корабль с таким двигателем сначала разгоняется на собственном горючем, а затем разворачивает огромную, диаметром тысячи километров воронку магнитного поля, которое захватывает водород из космического пространства. Этот водород используется в качестве неисчерпаемого источника топлива для термоядерного ракетного двигателя.

Применение двигателя Бассарда сулит огромные преимущества. Прежде всего за счет «дармового» топлива есть возможность двигаться с постоянным ускорением в 1 g, а значит – отпадают все проблемы, связанные с невесомостью. Кроме того двигатель позволяет разогнаться до огромной скорости – в 50% от скорости света и даже больше. Теоретически, двигаясь с ускорением в 1 g, расстояние в 10 световых лет корабль с двигателем Бассарда может преодолеть примерно за 12 земных лет, причем для экипажа из-за релятивистских эффектов прошло бы всего 5 лет корабельного времени.

К сожалению, на пути создания корабля с двигателем Бассарда стоит ряд серьезных проблем, которые нельзя решить на современном уровне технологий. Прежде всего необходимо создать гигантскую и надежную ловушку для водорода, генерирующую магнитные поля гигантской силы. При этом она должна обеспечивать минимальные потери и эффективную транспортировку водорода в термоядерный реактор. Сам процесс термоядерной реакции превращения четырех атомов водорода в атом гелия, предложенный Бассардом, вызывает немало вопросов. Дело в том, что эта простейшая реакция трудноосуществима в прямоточном реакторе, поскольку она слишком медленно идет и, в принципе, возможна только внутри звезд.

Однако прогресс в изучении термоядерного синтеза позволяет надеяться, что проблема может быть решена, например, использованием «экзотических» изотопов и антиматерии в качестве катализатора реакции.

Рис. 7. Сибирский углозуб может впадать в анабиоз на десятилетия.

Пока изыскания на тему двигателя Бассарда лежат исключительно в теоретической плоскости. Необходимы расчеты, базирующиеся на реальных технологиях. Прежде всего, нужно разработать двигатель, способный произвести энергию, достаточную для питания магнитной ловушки и поддержания термоядерной реакции, производства антиматерии и преодоления сопротивления межзвездной среды, которая будет тормозить огромный электромагнитный «парус».

Антиматерия в помощь

Возможно, это звучит странно, но сегодня человечество ближе к созданию двигателя, работающего на антиматерии, чем к интуитивно понятному и простому на первый взгляд прямоточному двигателю Бассарда.

Термоядерный реактор на дейтерии и тритии может генерировать 6х10 11 Дж на 1 г водорода – выглядит внушительно, особенно если учесть, что это в 10 миллионов раз более эффективно, чем химические ракеты. Реакция материи и антиматерии производит приблизительно на два порядка больше энергии. Когда речь идет об аннигиляции, расчеты ученого Марка Миллиса и плод его 27-летнего труда не выглядят такими уж удручающими: Миллис рассчитал затраты энергии на запуск космического корабля к Альфе Центавра и выяснил, что они составят 10 18 Дж, т.е. практически годовое потребление электричества всем человечеством.

Но это всего один килограмм антивещества.

Рис. 8. Зонд разработки Hbar Technologies будет иметь тонкий парус из углеродного волокна, покрытого ураном 238. Врезаясь в парус, антиводород будет аннигилировать и создавать реактивную тягу.

В результате аннигиляции водорода и антиводорода образуется мощный поток фотонов, скорость истечения которого достигает максимума для ракетного двигателя, т.е. скорости света. Это идеальный показатель, который позволяет добиться очень высоких околосветовых скоростей полета космического корабля с фотонным двигателем. К сожалению, применить антиматерию в качестве ракетного топлива очень непросто, поскольку во время аннигиляции происходят вспышки мощнейшего гамма-излучения, которое убьет космонавтов. Также пока не существует технологий хранения большого количества антивещества, да и сам факт накопления тонн антиматерии, даже в космосе далеко от Земли, является серьезной угрозой, поскольку аннигиляция даже одного килограмма антиматерии эквивалентна ядерному взрыву мощностью 43 мегатонны (взрыв такой силы способен превратить в пустыню треть территории США). Стоимость антивещества является еще одним фактором, осложняющим межзвездный полет на фотонной тяге. Современные технологии производства антивещества позволяют изготовить один грамм антиводорода по цене в десяток триллионов долларов.

Однако большие проекты по исследованию антиматерии приносят свои плоды. В настоящее время созданы специальные хранилища позитронов, «магнитные бутылки», представляющие собой охлажденные жидким гелием емкости со стенками из магнитных полей. В июне этого года ученым ЦЕРНа удалось сохранить атомы антиводорода в течение 2000 секунд. В Университете Калифорнии (США) строится крупнейшее в мире хранилище антивещества, в котором можно будет накапливать более триллиона позитронов. Одной из целей ученых Калифорнийского университета является создание переносных емкостей для антивещества, которые можно использовать в научных целях вдали от больших ускорителей. Этот проект пользуется поддержкой Пентагона, который заинтересован в военном применении антиматерии, так что крупнейший в мире массив магнитных бутылок вряд ли будет ощущать недостаток финансирования.

Современные ускорители смогут произвести один грамм антиводорода за несколько сотен лет. Это очень долго, поэтому единственный выход: разработать новую технологию производства антиматерии или объединить усилия всех стран нашей планеты. Но даже в этом случае при современных технологиях нечего и мечтать о производстве десятков тонн антиматерии для межзвездного пилотируемого полета.

Однако все не так уж печально. Специалисты НАСА разработали несколько проектов космических аппаратов, которые могли бы отправиться в глубокий космос, имея всего один микрограмм антивещества. В НАСА полагают, что совершенствование оборудования позволит производить антипротоны по цене примерно 5 млрд долл. за 1 грамм.

Американская компания Hbar Technologies при поддержке НАСА разрабатывает концепцию беспилотных зондов, приводимых в движение двигателем, работающем на антиводороде. Первой целью этого проекта является создание беспилотного космического аппарата, который смог бы менее чем за 10 лет долететь к поясу Койпера на окраине Солнечной системы. Сегодня долететь в такие удаленные точки за 5–7 лет невозможно, в частности, зонд НАСА New Horizons пролетит сквозь пояс Койпера через 15 лет после запуска.

Зонд, преодолевающий расстояние в 250 а.е. за 10 лет, будет очень маленьким, с полезной нагрузкой всего 10 мг, но ему и антиводорода потребуется немного – 30 мг. Теватрон выработает такое количество за несколько десятилетий, и ученые смогли бы протестировать концепцию нового двигателя в ходе реальной космической миссии.

Предварительные расчеты также показывают, что подобным образом можно отправить небольшой зонд к Альфе Центавра. На одном грамме антиводорода он долетит к далекой звезде за 40 лет.

Может показаться, что все вышеописанное – фантастика и не имеет отношения к ближайшему будущему. К счастью, это не так. Пока внимание общественности приковано к мировым кризисам, провалам поп-звезд и прочим актуальным событиям, остаются в тени эпохальные инициативы. Космическое агентство НАСА запустило грандиозный проект 100 Year Starship, который предполагает поэтапное и многолетнее создание научного и технологического фундамента для межпланетных и межзвездных полетов. Эта программа не имеет аналогов в истории человечества и должна привлечь ученых, инженеров и энтузиастов других профессий со всего мира. С 30 сентября по 2 октября 2011 года в Орландо (штат Флорида) состоится симпозиум, на котором будут обсуждаться различные технологии космических полетов. На основании результатов таких мероприятий специалисты НАСА будут разрабатывать бизнес-план по оказанию помощи определенным отраслям и компаниям, которые разрабатывают пока отсутствующие, но необходимые для будущего межзвездного перелета технологии. Если амбициозная программа НАСА увенчается успехом, уже через 100 лет человечество будет способно построить межзвездный корабль, а по Солнечной системе мы будем перемещаться с такой же легкостью, как сегодня перелетаем с материка на материк.