Как найти корень десятичной дроби. Извлечение корней: способы, примеры, решения

До появления калькуляторов студенты и преподаватели вычисляли квадратные корни вручную. Существует несколько способов вычисления квадратного корня числа вручную. Некоторые из них предлагают только приблизительное решение, другие дают точный ответ.

Шаги

Разложение на простые множители

    Разложите подкоренное число на множители, которые являются квадратными числами. В зависимости от подкоренного числа, вы получите приблизительный или точный ответ. Квадратные числа – числа, из которых можно извлечь целый квадратный корень. Множители – числа, которые при перемножении дают исходное число. Например, множителями числа 8 являются 2 и 4, так как 2 х 4 = 8, числа 25, 36, 49 являются квадратными числами, так как √25 = 5, √36 = 6, √49 = 7. Квадратные множители – это множители, которые являются квадратными числами. Сначала попытайтесь разложить подкоренное число на квадратные множители.

    • Например, вычислите квадратный корень из 400 (вручную). Сначала попытайтесь разложить 400 на квадратные множители. 400 кратно 100, то есть делится на 25 – это квадратное число. Разделив 400 на 25, вы получите 16. Число 16 также является квадратным числом. Таким образом, 400 можно разложить на квадратные множители 25 и 16, то есть 25 х 16 = 400.
    • Записать это можно следующим образом: √400 = √(25 х 16).
  1. Квадратные корень из произведения некоторых членов равен произведению квадратных корней из каждого члена, то есть √(а х b) = √a x √b. Воспользуйтесь этим правилом и извлеките квадратный корень из каждого квадратного множителя и перемножьте полученные результаты, чтобы найти ответ.

    • В нашем примере извлеките корень из 25 и из 16.
      • √(25 х 16)
      • √25 х √16
      • 5 х 4 = 20
  2. Если подкоренное число не раскладывается на два квадратных множителя (а так происходит в большинстве случаев), вы не сможете найти точный ответ в виде целого числа. Но вы можете упростить задачу, разложив подкоренное число на квадратный множитель и обыкновенный множитель (число, из которого целый квадратный корень извлечь нельзя). Затем вы извлечете квадратный корень из квадратного множителя и будете извлекать корень из обыкновенного множителя.

    • Например, вычислите квадратный корень из числа 147. Число 147 нельзя разложить на два квадратных множителя, но его можно разложить на следующие множители: 49 и 3. Решите задачу следующим образом:
      • = √(49 х 3)
      • = √49 х √3
      • = 7√3
  3. Если нужно, оцените значение корня. Теперь можно оценить значение корня (найти приблизительное значение), сравнив его со значениями корней квадратных чисел, находящихся ближе всего (с обеих сторон на числовой прямой) к подкоренному числу. Вы получите значение корня в виде десятичной дроби, которую необходимо умножить на число, стоящее за знаком корня.

    • Вернемся к нашему примеру. Подкоренное число 3. Ближайшими к нему квадратными числами будут числа 1 (√1 = 1) и 4 (√4 = 2). Таким образом, значение √3 расположено между 1 и 2. Та как значение √3, вероятно, ближе к 2, чем к 1, то наша оценка: √3 = 1,7. Умножаем это значение на число у знака корня: 7 х 1,7 = 11,9. Если вы сделаете расчеты на калькуляторе, то получите 12,13, что довольно близко к нашему ответу.
      • Этот метод также работает с большими числами. Например, рассмотрим √35. Подкоренное число 35. Ближайшими к нему квадратными числами будут числа 25 (√25 = 5) и 36 (√36 = 6). Таким образом, значение √35 расположено между 5 и 6. Так как значение √35 намного ближе к 6, чем к 5 (потому что 35 всего на 1 меньше 36), то можно заявить, что √35 немного меньше 6. Проверка на калькуляторе дает нам ответ 5,92 - мы были правы.
  4. Еще один способ – разложите подкоренное число на простые множители . Простые множители – числа, которые делятся только на 1 и самих себя. Запишите простые множители в ряд и найдите пары одинаковых множителей. Такие множители можно вынести за знак корня.

    • Например, вычислите квадратный корень из 45. Раскладываем подкоренное число на простые множители: 45 = 9 х 5, а 9 = 3 х 3. Таким образом, √45 = √(3 х 3 х 5). 3 можно вынести за знак корня: √45 = 3√5. Теперь можно оценить √5.
    • Рассмотрим другой пример: √88.
      • = √(2 х 44)
      • = √ (2 х 4 х 11)
      • = √ (2 х 2 х 2 х 11). Вы получили три множителя 2; возьмите пару из них и вынесите за знак корня.
      • = 2√(2 х 11) = 2√2 х √11. Теперь можно оценить √2 и √11 и найти приблизительный ответ.

    Вычисление квадратного корня вручную

    При помощи деления в столбик

    1. Этот метод включает процесс, аналогичный делению в столбик, и дает точный ответ. Сначала проведите вертикальную линию, делящую лист на две половины, а затем справа и немного ниже верхнего края листа к вертикальной линии пририсуйте горизонтальную линию. Теперь разделите подкоренное число на пары чисел, начиная с дробной части после запятой. Так, число 79520789182,47897 записывается как "7 95 20 78 91 82, 47 89 70".

      • Для примера вычислим квадратный корень числа 780,14. Нарисуйте две линии (как показано на рисунке) и слева сверху напишите данное число в виде "7 80, 14". Это нормально, что первая слева цифра является непарной цифрой. Ответ (корень из данного числа) будете записывать справа сверху.
    2. Для первой слева пары чисел (или одного числа) найдите наибольшее целое число n, квадрат которого меньше или равен рассматриваемой паре чисел (или одного числа). Другими словами, найдите квадратное число, которое расположено ближе всего к первой слева паре чисел (или одному числу), но меньше ее, и извлеките квадратный корень из этого квадратного числа; вы получите число n. Напишите найденное n сверху справа, а квадрат n запишите снизу справа.

      • В нашем случае, первым слева числом будет число 7. Далее, 4 < 7, то есть 2 2 < 7 и n = 2. Напишите 2 сверху справа - это первая цифра в искомом квадратном корне. Напишите 2×2=4 справа снизу; вам понадобится это число для последующих вычислений.
    3. Вычтите квадрат числа n, которое вы только что нашли, из первой слева пары чисел (или одного числа). Результат вычисления запишите под вычитаемым (квадратом числа n).

      • В нашем примере вычтите 4 из 7 и получите 3.
    4. Снесите вторую пару чисел и запишите ее около значения, полученного в предыдущем шаге. Затем удвойте число сверху справа и запишите полученный результат снизу справа с добавлением "_×_=".

      • В нашем примере второй парой чисел является "80". Запишите "80" после 3. Затем, удвоенное число сверху справа дает 4. Запишите "4_×_=" снизу справа.
    5. Заполните прочерки справа.

      • В нашем случае, если вместо прочерков поставить число 8, то 48 х 8 = 384, что больше 380. Поэтому 8 - слишком большое число, а вот 7 подойдет. Напишите 7 вместо прочерков и получите: 47 х 7 = 329. Запишите 7 сверху справа - это вторая цифра в искомом квадратном корне числа 780,14.
    6. Вычтите полученное число из текущего числа слева. Запишите результат из предыдущего шага под текущим числом слева, найдите разницу и запишите ее под вычитаемым.

      • В нашем примере, вычтите 329 из 380, что равно 51.
    7. Повторите шаг 4. Если сносимой парой чисел является дробная часть исходного числа, то поставьте разделитель (запятую) целой и дробной частей в искомом квадратном корне сверху справа. Слева снесите вниз следующую пару чисел. Удвойте число сверху справа и запишите полученный результат снизу справа с добавлением "_×_=".

      • В нашем примере следующей сносимой парой чисел будет дробная часть числа 780.14, поэтому поставьте разделитель целой и дробной частей в искомом квадратном корне сверху справа. Снесите 14 и запишите снизу слева. Удвоенным числом сверху справа (27) будет 54, поэтому напишите "54_×_=" снизу справа.
    8. Повторите шаги 5 и 6. Найдите такое наибольшее число на место прочерков справа (вместо прочерков нужно подставить одно и тоже число), чтобы результат умножения был меньше или равен текущему числу слева.

      • В нашем примере 549 х 9 = 4941, что меньше текущего числа слева (5114). Напишите 9 сверху справа и вычтите результат умножения из текущего числа слева: 5114 - 4941 = 173.
    9. Если для квадратного корня вам необходимо найти больше знаков после запятой, напишите пару нулей у текущего числа слева и повторяйте шаги 4, 5 и 6. Повторяйте шаги, до тех пор пока не получите нужную вам точность ответа (число знаков после запятой).

    Понимание процесса

      Для усвоения данного метода представьте число, квадратный корень которого необходимо найти, как площадь квадрата S. В этом случае вы будете искать длину стороны L такого квадрата. Вычисляем такое значение L, при котором L² = S.

      Задайте букву для каждой цифры в ответе. Обозначим через A первую цифру в значении L (искомый квадратный корень). B будет второй цифрой, C - третьей и так далее.

      Задайте букву для каждой пары первых цифр. Обозначим через S a первую пару цифр в значении S, через S b - вторую пару цифр и так далее.

      Уясните связь данного метода с делением в столбик. Как и в операции деления, где каждый раз нас интересует только одна следующая цифра делимого числа, при вычислении квадратного корня мы последовательно работаем с парой цифр (для получения одной следующей цифры в значении квадратного корня).

    1. Рассмотрим первую пару цифр Sa числа S (Sa = 7 в нашем примере) и найдем ее квадратный корень. В этом случае первой цифрой A искомого значения квадратного корня будет такая цифра, квадрат которой меньше или равен S a (то есть ищем такое A, при котором выполняется неравенство A² ≤ Sa < (A+1)²). В нашем примере, S1 = 7, и 2² ≤ 7 < 3²; таким образом A = 2.

      • Допустим, что нужно разделить 88962 на 7; здесь первый шаг будет аналогичным: рассматриваем первую цифру делимого числа 88962 (8) и подбираем такое наибольшее число, которое при умножении на 7 дает значение меньшее или равное 8. То есть ищем такое число d, при котором верно неравенство: 7×d ≤ 8 < 7×(d+1). В этом случае d будет равно 1.
    2. Мысленно представьте квадрат, площадь которого вам нужно вычислить. Вы ищите L, то есть длину стороны квадрата, площадь которого равна S. A, B, C - цифры в числе L. Записать можно иначе: 10А + B = L (для двузначного числа) или 100А + 10В + С = L (для трехзначного числа) и так далее.

      • Пусть (10A+B)² = L² = S = 100A² + 2×10A×B + B² . Запомните, что 10A+B - это такое число, у которого цифра B означает единицы, а цифра A - десятки. Например, если A=1 и B=2, то 10A+B равно числу 12.(10A+B)² - это площадь всего квадрата, 100A² - площадь большого внутреннего квадрата, - площадь малого внутреннего квадрата, 10A×B - площадь каждого из двух прямоугольников. Сложив площади описанных фигур, вы найдете площадь исходного квадрата.

    Вычисление (или извлечение) квадратного корня можно производить несколькими способами, но все они не сказать что уж очень просты. Проще, конечно, прибегнуть к помощи калькулятора. Но если такой возможности нет (или вы хотите понять суть квадратного корня), могу посоветовать пойти следующим путем, его алгоритм таков:

    Если на такие длительные вычисления у вас нет сил, желания или терпения, можно прибегнуть к помощи грубого подбора, его плюс в том, что он невероятно быстрый и при должной смекалке точный. Пример:

    Когда я учился в школе (в начале 60-х годов), нас учили извлекать квадратный корень из любого числа. Методика несложная, внешне похожа на деление столбиком, но излагать е здесь, это потребуется полчаса времени и 4-5 тысяч знаков текста. Но зачем это Вам? У вас есть телефон или иной гаджет, в нм есть калькулятор. Калькулятор есть и в любом компьютере. Лично я предпочитаю производить такого рода вычисления в Excel.

    Зачастую в школе требуется находить квадратные корни разных чисел. Но если вот мы привыкли пользоваться постоянно для этого калькулятором, то на экзаменах такой возможности не будет, поэтому нужно учиться искать корень без помощи калькулятора. А сделать-то это в принципе возможно.

    Алгоритм таков:

    Смотрите сначала на последнюю цифру вашего числа:

    Например,

    Теперь требуется определить примерно значение для корня из самой левой группы

    В случае когда число имеет больше двух групп, то находить корень надо так:

    А вот следующая циферка должна быть именно наибольшей, подобрать е надо так:

    Теперь надо образовать новое число А посредством добавления к остатку, который был получен выше, следующую группу.

    В наших примерах:

  • Столбиком наджней, а когда нужно больше пятнадцати знаков, то компьютеры и телефоны с калькуляторами чаще всего отдыхают. Осталось проверить, займт ли описание методики 4-5 тыс. знаков.

    Берм любое число, от запятой отсчитываем пары цифр вправо и влево

    Например, 1234567890,098765432100

    Пара цифр - это как бы двузначное число. Корень из двузначного - однозначное. Подбираем однозначное, квадрат которого меньше первой пары цифр. В нашем случае это 3.

    Как при делении столбиком, под первой парой выписываем этот квадрат и из первой пары вычитаем. Результат сносим под подчерк. 12 - 9 = 3. Добавляем к этой разнице вторую пару цифр (будет 334). Слева от числа берм удвоенное значение той части результата, которую уже нашли о дополняем цифрой (у нас 2*6=6), такой, чтобы при умножении на не полученное число не превосходило число со второй парой цифр. Получаем, что найденная цифра - пятрка. Снова находим разность (9), сносим следующую пару цифр получая 956, снова выписываем удвоенную часть результата (70), снова е дополняем нужной цифрой и так далее до упора. Или до нужной точности вычислений.

    Во-первых для того что бы вычислить квадратный корень надо хорошо знать таблицу умножения. Самые простые примеры - это 25 (5 на 5 = 25) и так далее. Если же брать числа посложнее, то можно использовать данную таблицу, где по горизонтали единицы, а по вертикале десятки.

    Есть хороший способ как найти корень из числа без помощи калькуляторов. Для этого вам понадобится линейка и циркуль. Суть в том, что вы находите на линейке значение, которое у вас под корнем. Например, ставите отметку возле 9. Ваша задача - поделить это число на равное количество отрезков, то есть на два линии по 4,5 см, а на ровный отрезок. Несложно догадаться, что в итоге получится 3 отрезка по 3 сантиметра.

    Способ нелегкий и для больших чисел не подойдет, но зато считается без калькулятора.

    без помощи калькулятора способу извлечения корня квадратного учили в советские времена в школе в 8-м классе.

    Для этого надо разбить многозначное число справа налево на грани по 2 цифры :

    Первая цифра корня это целый корень из левой грани, в данном случае, 5.

    Вычитаем 5 в квадрате из 31, 31-25=6 и к шестерке приписываем следующую грань, имеем 678.

    Следующая цифра х подбирается к удвоенной пятерке так, чтобы

    10х*х было максимально большим, но меньшим чем 678.

    х=6, поскольку 106*6 = 636,

    теперь вычисляем 678 - 636 = 42 и добавляем следующую грань 92, имеем 4292.

    Снова ищем максимальный х, такой что 112х*х lt; 4292.

    Ответ: корень равен 563

    Так можно продолжать сколько требуется.

    В некоторых случаях можно попытаться разложить подкоренное число на два или несколько квадратных множителей.

    Также полезно запомнить таблицу (или хотя бы какую-то ее часть) - квадраты натуральных чисел от 10 до 99.

    Предлагаю изобретенный мною вариант извлечения квадратного корня в столбик. Он отличается от общеизвестного, исключением подбора чисел. Но как выяснил позже, данный метод уже существовал за много лет до моего рождения. Описал его в своей книге Всеобщая арифметика или книга об арифметических синтезе и анализе великий Исаак Ньютон. Так что здесь излагаю свое видение и обоснование алгоритма метода по Ньютону. Запоминать алгоритм не стоит. Можно просто при необходимости пользоваться схемой на рисунке в качестве наглядного пособия.

    С помощью таблиц можно не вычислить, а найти, корни квадратные толь из чисел которые есть в таблицах. Проще всего вычислять корни не только квадратные, но и других степеней, методом последовательных приближений. Например вычислим корень квадратный из 10739, заменяем три последние цифры нулями и извлечем корень из 10000 получим 100 с недостатком, поэтому берем число 102 возводим его в квадрат, получаем 10404, что тоже меньше заданного, берем 103*103=10609 опять с недостатком, берем 103,5*103,5=10712,25, берем ещ больше 103,6*103,6=10732, берем 103,7*103,7=10753,69, что уже с избытком. Можно принять корень из 10739 примерно равны 103,6. Более точно 10739=103,629... . . Аналогично вычисляем корень кубический сначала из 10000 получаем примерно 25*25*25=15625, что с избытком, берем 22*22*22=10,648, берем чуть больше 22,06*22,06*22,06=10735, что очень близко к заданному.

Инструкция

Подберите подкоренному числу такой множитель, вынесение которого из под корня действительно выражение - иначе операция потеряет . Например, если под знаком корня с показателем, равным трем (кубический корень), стоит число 128, то из под знака можно вынести, например, число 5. При этом подкоренное число 128 придется разделить на 5 в кубе: ³√128 = 5∗³√(128/5³) = 5∗³√(128/125) = 5∗³√1.024. Если наличие дробного числа под знаком корня не противоречит условиям задачи, то можно в таком виде. Если же нужен более простой вариант, то сначала разбейте подкоренное выражение на такие целочисленные множители, кубический корень одного из которых будет являться целым число м. Например: ³√128 = ³√(64∗2) = ³√(4³∗2) = 4∗³√2.

Используйте для подбора множителей подкоренного числа , если вычислять в уме степени числа не представляется возможным. Особенно это актуально к корня м с показателем степени больше двух. Если есть доступ в интернет, то можно производить вычисления встроенными в поисковые системы Google и Nigma вычислителями. Например, если надо найти наибольший целочисленный множитель, который можно вынести из под знака кубического корня для числа 250, то перейдя на сайт Google введите запрос «6^3», чтобы проверить, нельзя ли вынести из под знака корня шестерку. Поисковик покажет результат, равный 216. Увы, 250 нельзя разделить без остатка на это число . Тогда введите запрос 5^3. Результатом будет 125, а это позволяет разбить 250 на множители 125 и 2, а значит вынести из под знака корня число 5, оставив там число 2.

Источники:

  • как вынести из под корня
  • Квадратный корень из произведения

Вынести из-под корня один из сомножителей необходимо в ситуациях, когда нужно упростить математическое выражение. Бывают случаи, когда выполнить нужные вычисления с помощью калькулятора невозможно. Например, если вместо чисел используются буквенные обозначения переменных.

Инструкция

Разложите подкоренное выражение на простые сомножители. Посмотрите, какой из сомножителей повторяется столько же раз, указано в показателей корня , или больше. Например, вам нужно извлечь корень из числа а в четвертой степени. В этом случае число можно представить как а*а*а*а = а*(а*а*а)=а*а3. Показателю корня в этом случае будет соответствовать сомножитель а3. Его и нужно вынести за знак .

Извлеките корень получившихся подкоренных в отдельности там, где это возможно. Извлечение корня представляет собой алгебраическое действие, обратное возведению в степень. Извлечение корня произвольной степени из числа найти такое число, которое при возведении его в эту произвольную степень даст в результате данное число. Если извлечение корня произвести нельзя, оставьте подкоренное выражение под знаком корня так, как оно есть. В результате проведения перечисленных действий вы произведете вынесение из-под знака корня .

Видео по теме

Обратите внимание

Будьте внимательны при записи подкоренного выражения в виде сомножителей – ошибка на этом этапе приведёт к неправильным результатам.

Полезный совет

При извлечении корней удобно пользоваться специальными таблицами или таблицами логарифмических корней – этим вы значительно сократите время на нахождение правильного решения.

Источники:

  • знак извлечения корня в 2019

Упрощение алгебраических выражений требуется во многих разделах математики, в том числе при решении уравнений высших степеней, дифференцировании и интегрировании. При этом используется несколько методов, включая разложение на множители. Чтобы применить этот способ, нужно найти и вынести общий множитель за скобки .

Инструкция

Вынесение общего множителя за скобки – один из самых распространенных способов разложения . Этот прием применяется для упрощения структуры длинных алгебраических выражений, т.е. многочленов. Общим может быть число, одночлен или двучлен, а для его поиска применяется распределительное свойство умножения.

Число.Посмотрите внимательно на коэффициенты при каждом многочлена, можно ли разделить их на одно и то же число. Например, в выражении 12 z³ + 16 z² – 4 очевидным является множитель 4. После преобразования получится 4 (3 z³ + 4 z² - 1). Иными , это число является наименьшим общим целочисленным делителем всех коэффициентов.

Одночлен.Определите, ли одна и та же переменная в каждый из слагаемых многочлена. Предположим, что это так, теперь посмотрите на коэффициенты, как в предыдущем случае. Пример: 9 z^4 – 6 z³ + 15 z² – 3 z.

Каждый элемент этого многочлена содержит переменную z. Кроме того, все коэффициенты – числа, кратные 3. Следовательно, общим множителем будет одночлен 3 z:3 z (3 z³ – 2 z² + 5 z - 1).

Двучлен.За скобки общий множитель из двух , переменной и числа, которое является общего многочлена. Поэтому, если множитель -двучлен неочевиден, то нужно найти хотя бы один корень. Выделите свободный член многочлена, это коэффициент без переменной. Теперь примените метод подстановки в общее выражение всех целочисленных делителей свободного члена.

Рассмотрите : z^4 – 2 z³ + z² - 4 z + 4. Проверьте, не является ли какой-либо из целых делителей числа 4 z^4 – 2 z³ + z² - 4 z + 4 = 0. Путем простой подстановки найдите z1 = 1 и z2 = 2, значит, за скобки можно вынести двучлены (z - 1) и (z - 2). Для того, чтобы найти оставшееся выражение, воспользуйтесь последовательным делением в столбик.

А у вас есть зависимость от калькулятора ? Или вы считаете, что кроме как с калькулятором или при помощи таблицы квадратов очень сложно вычислить, например, .

Случается, школьники привязаны к калькулятору и даже 0,7 на 0,5 умножают, нажимая на заветные кнопочки. Говорят, ну я все равно знаю как посчитать, а сейчас сэкономлю время… Вот будет экзамен… тогда и напрягусь…

Так дело в том, что на экзамене и так будет предостаточно «напряжных моментов»… Как говорится, вода камень точит. Вот и на экзамене мелочи, если их много, способны подкосить…

Давайте минимизируем количество возможных неприятностей.

Извлекаем квадратный корень из большого числа

Мы будем говорить сейчас только о случае, когда результат извлечения корня квадратного – целое число.

Случай 1.

Итак, пусть нам во что-бы то ни стало (например, при вычислении дискриминанта) нужно вычислить корень квадратный из 86436.

Мы будем раскладывать число 86436 на простые множители. Делим на 2, – получаем 43218; снова делим на 2, – получаем 21609. На 2 больше нацело число не делится. Но так как сумма цифр делится на 3, то и само число делится на 3 (вообще говоря, видно, что оно и на 9 делится). . Еще раз делим на 3, – получаем 2401. 2401 на 3 нацело не делится. На пять не делится (не оканчивается цифрой 0 или 5).

Подозреваем делимость на 7. Действительно, а ,

Итак, Полный порядок!

Случай 2.

Пусть нам нужно вычислить . Действовать так же, как описано выше, неудобно. Пытаемся разложить на простые множители…

На 2 число 1849 нацело не делится (не является четным)…

На 3 нацело не делится (сумма цифр не кратна 3)…

На 5 нацело не делится (последняя цифра – не 5 и не 0)…

На 7 нацело не делится, на 11 не делится, на 13 не делится… Ну и долго нам так перебирать все простые числа?

Будем рассуждать несколько иначе.

Мы понимаем, что

Мы сузили круг поиска. Теперь перебираем числа от 41 до 49. Причем ясно, что раз последняя цифра числа – 9, то останавливаться стоит на вариантах 43 или 47, – только эти числа при возведении в квадрат дадут последнюю цифру 9.

Ну и тут уже, конечно, мы останавливаемся на 43. Действительно,

P.S. А как, ксатати, мы умножаем 0,7 на 0,5?

Следует умножить 5 на 7, не обращая внимание на нули и знаки, а потом отделить, идя справа налево, два знака запятой. Получаем 0,35.