График и формула показательной функции. Показательная функция – свойства, графики, формулы

1.Показательная функция – это функция вида у(х) =а х, зависящая от показателя степени х, при постоянном значении основания степени a , где а > 0, a ≠ 0, xϵR (R – множество действительных чисел).

Рассмотрим график функции, если основание не будет удовлетворять условию: а>0
a) a < 0
Если a < 0 – возможно возведение в целую степень или в рациональную степень с нечетным показателем.
а = -2

Если а = 0 – функция у = определена и имеет постоянное значение 0


в) а =1
Если а = 1 – функция у = определена и имеет постоянное значение 1



2. Рассмотрим подробнее показательную функцию:

0


Область определения функции (ООФ)

Область допустимых значений функции (ОДЗ)

3. Нули функции (у = 0)

4. Точки пересечения с осью ординат oy (x = 0)

5. Возрастания, убывания функции

Если , то функция f(x) возрастает
Если , то функция f(x) убывает
Функция y= , при 0 Функция у =, при a> 1 монотонно возрастает
Это следует из свойств монотонности степени с действительным показателем.

6. Чётность, нечётность функции

Функция у = не симметрична относительно оси 0у и относительно началу координат, следовательно не является ни чётной, ни нечётной. (Функция общего вида)

7. Функция у = экстремумов не имеет

8. Свойства степени с действительным показателем:

Пусть а > 0; a≠1
b> 0; b≠1

Тогда для xϵR; yϵR:


Свойства монотонности степени:

если , то
Например:




Если a> 0, , то .
Показательная функция непрерывна в любой точке ϵ R.

9. Относительное расположение фунцкции

Чем больше основание а, тем ближе к осям ох и оу

a > 1, a = 20




Если а0, то показательная функция принимает вид близкий к y = 0.
Если а1, то дальше от осей ох и оу и график принимает вид близкий к функции у = 1.

Пример 1.
Построить график у =

Введем сначала определение показательной функции.

Показательная функция $f\left(x\right)=a^x$, где $a >1$.

Введем свойства показательной функции, при $a >1$.

    \ \[корней\ нет.\] \

    Пересечение с осями координат. Функция не пересекает ось $Ox$, но пересекает ось $Oy$ в точке $(0,1)$.

    $f""\left(x\right)={\left(a^xlna\right)}"=a^x{ln}^2a$

    \ \[корней\ нет.\] \

    График (рис. 1).

Рисунок 1. График функции $f\left(x\right)=a^x,\ при\ a >1$.

Показательная функция $f\left(x\right)=a^x$, где $0

Введем свойства показательной функции, при $0

    Область определения -- все действительные числа.

    $f\left(-x\right)=a^{-x}=\frac{1}{a^x}$ -- функция ни четна, ни нечетна.

    $f(x)$ - непрерывна на всей области определения.

    Область значения -- интервал $(0,+\infty)$.

    $f"(x)=\left(a^x\right)"=a^xlna$

    \ \[корней\ нет.\] \ \[корней\ нет.\] \

    Функция выпукла на всей области определения.

    Поведение на концах области определения:

    \[{\mathop{lim}_{x\to -\infty } a^x\ }=+\infty \] \[{\mathop{lim}_{x\to +\infty } a^x\ }=0\]

    График (рис. 2).

Пример задачи на построение показательной функции

Исследовать и построить график функции $y=2^x+3$.

Решение.

Проведем исследование по примеру схемы выше:

    Область определения -- все действительные числа.

    $f\left(-x\right)=2^{-x}+3$ -- функция ни четна, ни нечетна.

    $f(x)$ - непрерывна на всей области определения.

    Область значения -- интервал $(3,+\infty)$.

    $f"\left(x\right)={\left(2^x+3\right)}"=2^xln2>0$

    Функция возрастает на всей области определения.

    $f(x)\ge 0$ на всей области определения.

    Пересечение с осями координат. Функция не пересекает ось $Ox$, но пересекает ось $Oy$ в точке ($0,4)$

    $f""\left(x\right)={\left(2^xln2\right)}"=2^x{ln}^22>0$

    Функция выпукла на всей области определения.

    Поведение на концах области определения:

    \[{\mathop{lim}_{x\to -\infty } a^x\ }=0\] \[{\mathop{lim}_{x\to +\infty } a^x\ }=+\infty \]

    График (рис. 3).

Рисунок 3. График функции $f\left(x\right)=2^x+3$

Урок № 2

Тема: Показательная функция, её свойства и график.

Цель: Проверить качество усвоения понятия «показательная функция»; сформировать умения и навыки по распознаванию показательной функции, по использованию её свойств и графиков, научить учащихся пользоваться аналитической и графической формами записи показательной функции; обеспечить рабочую обстановку на уроке.

Оборудование: доска, плакаты

Форма урока : классно-урочная

Вид урока : практическое занятие

Тип урока : урок обучения умениям и навыкам

План урока

1. Организационный момент

2. Самостоятельная работа и проверка домашнего задания

3. Решение задач

4. Подведение итогов

5. Задание на дом

Ход урока .

1. Организационный момент :

Здравствуйте. Откройте тетради, запишите сегодняшнее число и тему урока «Показательная функция». Сегодня будем продолжать изучать показательную функцию, её свойства и график.

2. Самостоятельная работа и проверка домашнего задания .

Цель: проверить качество усвоения понятия «показательная функция» и проверить выполнение теоретической части домашнего задания

Метод: тестовое задание, фронтальный опрос

В качестве домашнего задания вам были заданы номера из задачника и параграф из учебника. Выполнение номеров из учебника проверять сейчас не будем, но вы сдадите тетради в конце урока. Сейчас же будет проведена проверка теории в виде маленького теста. Задание у всех одинаковое: вам дан перечень функций, вы должны узнать какие из них являются показательными (подчеркнуть их). И рядом с показательной функцией необходимо написать является она возрастающей, либо убывающей.

Вариант 1

Ответ

Б)

Д) - показательная, убывающая

Вариант 2

Ответ

Г) - показательная, убывающая

Д) - показательная, возрастающая

Вариант 3

Ответ

А) - показательная, возрастающая

Б) - показательная, убывающая

Вариант 4

Ответ

А) - показательная, убывающая

В) - показательная, возрастающая

Теперь вместе вспомним, какая функция называется показательной?

Функция вида , где и , называется показательной функцией.

Какая область определения у этой функции?

Все действительные числа.

Какая область значений показательной функции?

Все положительные действительные числа.

Убывает если основание степени больше нуля, но меньше единицы.

В каком случае показательная функция убывает на своей области определения?

Возрастает, если основание степени больше единицы.

3. Решение задач

Цель : сформировать умения и навыки по распознаванию показательной функции, по использованию её свойств и графиков, научить учащихся пользоваться аналитической и графической формами записи показательной функции

Метод : демонстрация учителем решения типичных задач, устная работа, работа у доски, работа в тетради, беседа учителя с учащимися.

Свойства показательной функции можно использовать при сравнении 2-х и более чисел. Например: № 000. Сравните значения и , если а) ..gif" width="37" height="20 src=">, то это довольно сложная работа: нам бы пришлось извлекать кубический корень из 3 и из 9, и сравнивать их. Но мы знаем, что возрастает, это в свою очередь значит, что при увеличении аргумента, увеличивается значение функции, то есть нам достаточно сравнить между собой значения аргумента и , очевидно, что (можно продемонстрировать на плакате с изображенной возрастающей показательной функцией). И всегда при решении таких примеров вначале определяете основание показательной функции, сравниваете с 1, определяете монотонность и переходите к сравнению аргументов. В случает убывания функции: при возрастания аргумента уменьшается значение функции, следовательно, знак неравенства меняем при переходе от неравенства аргументов к неравенству функций. Далее решаем устно: б)

-

В)

-

Г)

-

- № 000. Сравните числа: а) и

Следовательно, функция возрастает, тогда

Почему ?

Возрастающая функция и

Следовательно, функция убывает, тогда

Обе функции возрастают на всей своей области определения, т. к. они являются показательными с основанием степени большим единицы.

Какой смысл в ней заложен?

Строим графики:

Какая функция быстрее возрастает, при стремлении https://pandia.ru/text/80/379/images/image062_0.gif" width="20 height=25" height="25">

Какая функция быстрее убывает, при стремлении https://pandia.ru/text/80/379/images/image062_0.gif" width="20 height=25" height="25">

На промежутке какая из функций имеет большее значение в конкретно заданной точке?

Г) , https://pandia.ru/text/80/379/images/image068_0.gif" width="69" height="57 src=">. Вначале выясним область определения этих функций. Совпадают ли они?

Да, область определения этих функций все действительные числа.

Назовите область значения каждой из этих функций.

Области значений этих функций совпадают: все положительные действительные числа.

Определите тип монотонности каждой из функций.

Все три функции убывают на всей своей области определения, т. к. они являются показательными с основанием степени меньшими единицы и большими нуля.

Какая особая точка существует у графика показательной функции?

Какой смысл в ней заложен?

Какое бы не было основание степени показательной функции, если в показателе стоит 0,то значение этой функции 1.

Строим графики:

Давайте проанализируем графики. Сколько точек пересечения у графиков функций?

Какая функция быстрее убывает, при стремлении https://pandia.ru/text/80/379/images/image070.gif" width="41 height=57" height="57">

Какая функция быстрее возрастает, при стремлении https://pandia.ru/text/80/379/images/image070.gif" width="41 height=57" height="57">

На промежутке какая из функций имеет большее значение в конкретно заданной точке?

На промежутке какая из функций имеет большее значение в конкретно заданной точке?

Почему показательные функции с разными основаниями имеют только одну точку пересечения?

Показательные функции являются строго монотонными на всей своей области определения, поэтому они могут пересекаться только в одной точке.

Следующее задание будет направлено на использование этого свойства. № 000. Найдите наибольшее и наименьшее значение заданной функции на заданном промежутке а) . Вспомним, что строго монотонная функция принимает свои наименьшее и наибольшее значения на концах заданного отрезка. И если функция возрастающая, то её наибольшее значение будет на правом конце отрезка, а наименьшее на левом конце отрезка (демонстрация на плакате, на примере показательной функции). Если функция убывающая, то её наибольшее значение будет на левом конце отрезка, а наименьшее на правом конце отрезка (демонстрация на плакате, на примере показательной функции). Функция возрастающая, т. к. , следовательно, наименьшее значение функции будет в точке https://pandia.ru/text/80/379/images/image075_0.gif" width="145" height="29">. Пункты б) , в) г) решите самостоятельно тетради, проверку проведем устно.

Учащиеся решают задание в тетради

Убывающая функция

Убывающая функция

наибольшее значение функции на отрезке

наименьшее значение функции на отрезке

Возрастающая функция

наименьшее значение функции на отрезке

наибольшее значение функции на отрезке

- № 000. Найдите наибольшее и наименьшее значение заданной функции на заданном промежутке а) . Это задание практически такое же, как и предыдущее. Но здесь дан не отрезок, а луч. Мы знаем, что функция - возрастающая, при чем она не имеет ни наибольшего, ни наименьшего своего значения на всей числовой прямой https://pandia.ru/text/80/379/images/image063_0.gif" width="68" height="20">, и стремится к при , т. е. на луче функция при стремится к 0, но не имеет своего наименьшего значения, но у неё существует наибольшее значение в точке . Пункты б) , в) , г) решите самостоятельно тетради, проверку проведем устно.

Показательная функция - это обобщение произведения n чисел, равных a :
y(n) = a n = a·a·a···a ,
на множество действительных чисел x :
y(x) = a x .
Здесь a - фиксированное действительное число, которое называют основанием показательной функции .
Показательную функцию с основанием a также называют экспонентой по основанию a .

Обобщение выполняется следующим образом.
При натуральном x = 1, 2, 3,... , показательная функция является произведением x множителей:
.
При этом она обладает свойствами (1.5-8) (), которые следуют из правил умножения чисел. При нулевом и отрицательных значениях целых чисел , показательную функцию определяют по формулам (1.9-10). При дробных значениях x = m/n рациональных чисел, , ее определяют по формуле(1.11). Для действительных , показательную функцию определяют как предел последовательности:
,
где - произвольная последовательность рациональных чисел, сходящаяся к x : .
При таком определении, показательная функция определена для всех , и удовлетворяет свойствам (1.5-8), как и для натуральных x .

Строгая математическая формулировка определения показательной функции и доказательство ее свойств приводится на странице «Определение и доказательство свойств показательной функции ».

Свойства показательной функции

Показательная функция y = a x , имеет следующие свойства на множестве действительных чисел () :
(1.1) определена и непрерывна, при , для всех ;
(1.2) при a ≠ 1 имеет множество значений ;
(1.3) строго возрастает при , строго убывает при ,
является постоянной при ;
(1.4) при ;
при ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .

Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:

При b = e , получаем выражение показательной функции через экспоненту:

Частные значения

, , , , .

На рисунке представлены графики показательной функции
y(x) = a x
для четырех значений основания степени : a = 2 , a = 8 , a = 1/2 и a = 1/8 . Видно, что при a > 1 показательная функция монотонно возрастает. Чем больше основание степени a , тем более сильный рост. При 0 < a < 1 показательная функция монотонно убывает. Чем меньше показатель степени a , тем более сильное убывание.

Возрастание, убывание

Показательная функция, при является строго монотонной, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

y = a x , a > 1 y = a x , 0 < a < 1
Область определения - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений 0 < y < + ∞ 0 < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 нет нет
Точки пересечения с осью ординат, x = 0 y = 1 y = 1
+ ∞ 0
0 + ∞

Обратная функция

Обратной для показательной функции с основанием степени a является логарифм по основанию a .

Если , то
.
Если , то
.

Дифференцирование показательной функции

Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.

Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных :
.

Пусть задана показательная функция:
.
Приводим ее к основанию e :

Применим правило дифференцирования сложной функции . Для этого вводим переменную

Тогда

Из таблице производных имеем (заменим переменную x на z ):
.
Поскольку - это постоянная, то производная z по x равна
.
По правилу дифференцирования сложной функции:
.

Производная показательной функции

.
Производная n-го порядка:
.
Вывод формул > > >

Пример дифференцирования показательной функции

Найти производную функции
y = 3 5 x

Решение

Выразим основание показательной функции через число e .
3 = e ln 3
Тогда
.
Вводим переменную
.
Тогда

Из таблицы производных находим:
.
Поскольку 5ln 3 - это постоянная, то производная z по x равна:
.
По правилу дифференцирования сложной функции имеем:
.

Ответ

Интеграл

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
f(z) = a z
где z = x + iy ; i 2 = - 1 .
Выразим комплексную постоянную a через модуль r и аргумент φ :
a = r e i φ
Тогда


.
Аргумент φ определен не однозначно. В общем виде
φ = φ 0 + 2 πn ,
где n - целое. Поэтому функция f(z) также не однозначна. Часто рассматривают ее главное значение
.

Разложение в ряд


.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.