Бактериальная полиэфирная ферментация. Окисление и ферментация в производстве чая

Ключевые слова

МОЛОДНЯК КРУПНОГО РОГАТОГО СКОТА / РУБЕЦ / ПРОБИОТИК / АММИАК / КОНЦЕНТРАЦИЯ ВОДОРОДНЫХ ИОНОВ / ЛЕТУЧИЕ ЖИРНЫЕ КИСЛОТЫ / YOUNG CATTLE / RUMEN / PROBIOTIC / AMMONIA / HYDROGEN IONS CONCENTRATION / VOLATILE FATTY ACIDS

Аннотация научной статьи по животноводству и молочному делу, автор научной работы - Бабичева Ирина Андреевна, Мустафин Рамис Зуфарович

Изучено воздействие штаммов пробиотических препаратов Бацелл и Лактомикроцикол на рубцовое содержимое . Препараты включают в себя живые лактобактерии, бифидобактерии, незаменимые аминокислоты, органические кислоты, витамины, микроэлементы и биологически активные вещества. Для опыта с микробиологическим препаратом Бацелл были подобраны бычки казахской белоголовой породы, к основному рациону животных опытных групп добавляли пробиотик в дозах 15, 25 и 35 г/гол. в сутки. Препарат Лактомикроцикол вводили в основной рацион молодняка красной степной породы в дозах 10 г/гол/сут. в течение 3 мес.; 10 г в первые 7 сут., затем недельный перерыв и так в течение 3 мес; 10 г в первые 7 сут., затем 1 раз в декаду в течение 3 мес. В ходе исследования было отмечено смещение показателя концентрации водородных ионов в преджелудках животных в кислую сторону на 3,2-3,6% при скармливании Бацелла, что, по мнению авторов, объясняется увеличением концентрации ЛЖК в жидкости рубца бычков на 26,7%. Использование в составе рациона мультиэнзимного препарата Бацелл способствовало снижению концентрации аммиака в рубце, причём это снижение было заметно только у животных, получавших пробиотик в дозах 25 и 35 г/гол.в сутки. Скармливание кормовой добавки Лактомикроцикол также оказало влияние на рубцовое содержимое у подопытных животных. Анализ данных, полученных в результате эксперимента, позволил выявить, что наибольшая концентрация ЛЖК в рубцовой жидкости наблюдалась у бычков, к основному рациону которых добавляли 10 г пробиотика в первые 7 сут., затем делали недельный перерыв и так проводили в течение 3-х месяцев. В содержимом рубца этих животных выявлено больше летучих жирных кислот до кормления (на 3,6-8,6%), а также после кормления (на 2,8-13,4%). Результаты исследования рекомендуется использовать в хозяйствах Оренбургской области и других регионов, имеющих сходные условия содержания и выращивания молодняка крупного рогатого скота казахской белоголовой породы и красной степной породы.

Похожие темы научных работ по животноводству и молочному делу, автор научной работы - Бабичева Ирина Андреевна, Мустафин Рамис Зуфарович

  • Воздействие пробиотика на рубцовое содержимое молодняка красной степной породы

    2014 / Никулин Владимир Николаевич, Мустафин Рамис Зуфарович, Биктимиров Ринат Аптлажанович
  • 2016 / Христиановский Павел Игоревич, Гонтюрёв Владимир Анисимович, Иванов Сергей Анатольевич
  • Биохимические и микробиологические показатели содержимого рубца у бычков при использовании лактоамиловорина и селенита натрия

    2014 / Биктимиров Ринат Аптлажанович
  • Характеристика рубцового пищеварения жвачных животных при введении в рацион металлорганических комплексов

    2017 / Курилкина Марина Яковлевна, Холодилина Татьяна Николаевна, Муслюмова Дина Марсельевна, Атландерова Ксения Николаевна, Поберухин Михаил Михайлович
  • Особенности рубцового пищеварения бычков при скармливании различных доз кватерина

    2010 / Бабичева Ирина Андреевна
  • Влияние жиросодержащей добавки Палматрикс на процессы рубцового пищеварения бычков и эффективность использования ими питательных веществ рациона

    2018 / Левахин Юрий Иванович, Нуржанов Баер Серекпаевич, Рязанов Виталий Александрович, Поберухин Михаил Михайлович
  • Содержимое рубца молодняка крупного рогатого скота при скармливании микродобавок селена и йода

    2016 / Прохоров О.Н., Зубова Т.В., Колокольцова Е.А., Сапарова Е.И.
  • Влияние различных способов скармливания смесей сахаросодержащих компонентов на течение пищеварительных процессов в рубце

    2011 / Казачкова Надежда Михайловна
  • Использование питательных веществ корма бычками при скармливании различных доз пробиотика Бацелл

    2013 / Ворошилова Лариса Николаевна, Левахин Владимир Иванович
  • Влияние Ксиланита, Фоспасима и настойки пустырника на метаболические и функциональные показатели в организме кроликоматок при длительной транспортировке

    2016 / Ибрагимова Людмила Леонидовна, Исмагилова Эльза Равильевна

BACTERIAL FERMENTATION OF NUTRIENTS IN THE RUMEN OF CATTLE FED DIETS SUPPLEMENTED WITH PROBIOTIC PREPARATIONS

The effect of strains of the Bacell and Lactomicrotsikol probiotic preparations on the rumen contents of young cattle has been studied. The preparations include live lactobacteria, bifidobacteria, essential amino acids, organic acids, vitamins, minerals and biologically active substances. Kazakh White-Head steers were selected for the trials to test the microbiological Bacell preparation, which was added to the basic diet of animals of experimental groups in the doses of 15, 25 and 35 g/head a day. The Lactomicrotsikol supplement was introduced into the basic diet of the Red Steppe young animals in the doses of 10 g/head during 3 months; 10 g in the first 7 days, then a weekly interval, this mode of feeding being repeated during 3 months; then again 10 g in the first 7 days after the above three months, which was followed by once a decade feeding of the supplement for 3 months more. In the course of studies there was observed a shift of the hydrogen ions concentration index in the animals’ gizzards to the acidic side at 3.2-3.6%, when the Bacell preparation was fed, which is believed to be due to the increase of volatile fatty acids (VFA) concentration in the rumen fluid of steers by 26.7%. The inclusion of the multi-enzyme Bacell preparation into the diet stimulated the decrease of ammonia concentration in the rumen , this reduction having been observed only in animals obtaining the probiotic in doses of 25 and 35 g/day per head. The Laktomicrotsikol supplement fed to the animals influenced the ammonia content in the rumen of animals under study. The analysis of findings obtained as result of trials conducted revealed that the highest concentration of VFA in rumen fluid was observed in steers fed the basic diet supplemented with 10 g of the above probiotic in the first 7 days, followed with a week interval, with this mode of feeding having been repeated during the period of 3 months. In the rumen contents of these animals there was observed more volatile fatty acids before feeding (at 3.6-8.6%), and after feeding (at 2.8-13.4%) the probiotic . It is recommended to use the data, obtained in the course of studies, on the farms of Orenburg region and of other regions with similar conditions of Kazakh White-Head and Red Steppe young cattle management.

Текст научной работы на тему «Бактериальная ферментация питательных веществ в рубце при использовании пробиотических препаратов»

контрольной гр. прослушивали жёсткое везикулярное дыхание, сопровождающееся кашлем. На лапках образовались зачёсы. У двух кроликов был отмечен сильный, громкий, короткий, поверхностный кашель, область гортани припухла, температура тела повысилась (44,2°С), что свидетельствовало о воспалении гортани и трахеи. В III гр. соответствующие признаки ринита были отмечены только у двух особей, остальные находились в здоровом состоянии. У кроликоматок IV и V групп клинические признаки ринита не проявились.

Вывод. Введение перед транспортировкой препарата Ксиланит в дозе 0,45 мл на голову или гомеопатического препарата Фоспасим, 0,4 мл на голову, дважды - перед транспортировкой и после выгрузки в первый день адаптации, далее перорально по 12-13 капель ежедневно в течение 7 сут. предупреждает нарушение метаболических и функциональных изменений в организме и тем самым снижает эмоциональный стресс, улучшает процесс адаптации кроликоматок калифорнийской породы при длительной транспортировке.

Литература

1. Исмагилова Э.Р., Ибрагимова Л.Л. Применение гомеопатического препарата «Фоспасим» для повышения адаптационной способности кроликов при транспортировке // Фундаментальные исследования. 2013. № 8 (ч. 2). С. 376-379.

2. Ибрагимова Л.Л., Исмагилова Э.Р. Гистоструктура миокарда и надпочечников кроликов при транспортировке и применении препарата протектора // Фундаментальные исследования. 2013. № 10 (ч. 3). С. 164-167.

3. Магер С.Н., Напримеров В.А., Смирнов П.Н. Влияние стресс-факторов на воспроизводительную способность крупного рогатого скота // Вестник Новосибирского государственного аграрного университета. 2005. № 2. С. 49.

4. Сапожникова О.Г., Оробец В.А., Славецкая Б.М. Гомеопатическая коррекция стресса // Международный вестник ветеринарии. 2010. № 2. С. 44-46.

5. Крылов В.Н., Косилов В.И. Показатели крови молодняка казахской белоголовой породы и её помесей со светлой аквитанской // Известия Оренбургского государственного аграрного университета. 2009. № 2 (22). С. 121-125.

6. Литвинов К.С., Косилов В.И. Гематологические показатели молодняка красной степной породы // Вестник мясного скотоводства. 2008. Т. 1. № 61. С. 148-154.

7. Траисов Б.Б. Гематологические показатели мясо-шёрстных овец / Б.Б. Траисов, К.Г. Есенгалиев, А.К. Бозымова, В.И. Косилов // Известия Оренбургского государственного аграрного университета. 2012. № 3 (35). С. 124-125.

8. Антонова В.С., Топурия Г.М., Косилов В.И. Методология научных исследований в животноводстве. Оренбург, 2011. 246 с.

Бактериальная ферментация питательных веществ в рубце при использовании пробиотических препаратов

И.А. Бабичева, д.б.н., Р.З. Мустафин, к.б.н., ФГБОУ ВО Оренбургский ГАУ

Многообразные превращения питательных веществ в преджелудках жвачных животных происходят под действием различных видов микроорганизмов . При этом, проходя ряд полиступенчатых преобразований, в рубце образуется много метаболитов, одни из которых становятся для организма пластическим и энергетическим материалом, другие же превращаются в микро-биальный полноценный белок, являясь основным источником необходимых биологически активных веществ и незаменимых аминокислот .

Поэтому для обеспечения полигастричных животных нормальным питанием прежде всего следует создать оптимальные условия для развития микрофлоры . Степень интенсивности её жизнедеятельности зависит от многих факторов, важнейшими из которых являются концентрация водородных ионов среды, состояние стенок слизистой рубца, а также количество метаболитов корма в преджелудках .

Целью исследований было изучение воздействия штаммов пробиотических препаратов Бацелл и Лактомикроцикол на рубцовое содержимое молодняка крупного рогатого скота.

Материал и методы исследования. Для опыта с микробиологическим препаратом Бацелл были

подобраны бычки казахской белоголовой породы. Различия по группам заключались в том, что бычки опытных групп, в отличие от контрольных сверстников, к основному рациону дополнительно получали пробиотик в дозах соответственно 15, 25 и 35 г/гол. в сутки.

Влияние пробиотика Лактомикроцикол на степень интенсивности микробиологических процессов в рубце жвачных оценивали на молодняке красной степной породы. В рацион телят опытных групп включали пробиотик по разработанной схеме.

Исследование по изучению влияния пробиоти-ческих препаратов Бацелл и Лактомикроцикол на рубцовое содержимое бычков проводили в хозяйствах Оренбургской области. В опытах использовали препараты, включающие живые лактобактерии, бифидобактерии, незаменимые аминокислоты, органические кислоты, витамины, микроэлементы и биологически активные вещества.

Результаты исследования позволили установить, что скармливание в составе рациона различного количества кормовой добавки Бацелл, как источника ферментов протеолитического, амилолитического и целлюлозолитического действия, повлияло на степень интенсивности микробиологических процессов (табл. 1).

В частности, концентрация водородных ионов у животных контрольной и I опытной гр. была практически на одном уровне, разница не пре-

1. Концентрация основных метаболитов бактериальной ферментации в рубце животных при употреблении кормовой добавки Бацелл через 3 час. после кормления, (X±Sx)

Показатель Группа

контрольная I опытная II опытная III опытная

рН ЛЖК, ммоль/100 мл Аммиак, ммоль/100 мл 6,89±0,13 7,80±0,10 23,70±0,74 6,87±0,17 8,03±0,13 22,81±0,70 6,65±0,10 9,88±0,11 19,45±0,83 6,68±0,15 9,84±0,11 19,50±0,57

2. Схема опыта при применении кормовой добавки Лактомикроцикол

Группа Количество животных, гол. Исследуемый фактор

Контрольная I опытная II опытная III опытная 10 10 10 10 основной рацион ОР +10 г пробиотика на гол/сут в течение 3 мес. ОР +10 г пробиотика в первые 7 сут., затем недельный перерыв и так в течение 3 мес. ОР +10 г пробиотика в первые 7 сут., затем 1 раз в декаду в течение 3 мес.

3. Биохимические показатели содержимого рубца при скармливании Лактомикроцикола (X±Sx)

Показатель Группа

контрольная I опытная II опытная III пытная

ЛЖК, ммоль/100мл

до кормления через 3 часа 6,4±0,98 8,24±0,27 6,63±1,18* 8,47±0,36 6,95±0,93* 9,35±0,26 6,7±0,27* 8,94±0,23

Аммиак, ммоль/л

до кормления через 3 часа 20,6±0,31 22,67±0,17 20,87±0,61 22,8±0,30 21,6±0,64 24,0±0,12 21,07±0,38* 22,9±0,26

рН до кормления через 3 часа 7,13±0,02 6,79±0,01 7,11±0,01* 6,75±0,01 7,1±0,01* 6,71±0,01 7,11±0,01* 6,73±0,01

Примечание: * - Р < 0,05, разница с контролем достоверна

вышала 0,2-0,4%, тогда как у молодняка II и III I

опытных гр. этот показатель сместился в кислую а

сторону на 3,2-3,6% (Р>0,05). Снижение рН, б

вероятно, связано с увеличением концентрации ч

ЛЖК в жидкости рубца бычков II и III опытных р

гр., которое было на 26,7 и 26,2% (Р>0,05) выше, д

чем у сверстников контрольной гр. Концентрация с летучих жирных кислот в рубце у них находилась на

одном уровне и составила в среднем 9,86 ммоль/л, I

что было выше на 1,83 ммоль/л, или на 22,8% у

(Р>0,05), чем в I опытной гр. г

Использование в составе рациона мультиэн- р

зимного препарата способствовало снижению р

концентрации аммиака в рубце, причём это сни- п жение было заметно только во II и III опытных

гр. Скармливание 15 г/гол/сут этой кормовой до- э

бавки не оказало воздействия на протеолитическую т

активность микрофлоры, что хорошо видно по б содержанию аммиака, которое было практически

одинаковым с контрольными показателями. Раз- б

ница по концентрации аммиака в рубце бычков т

контрольной и II опытной гр. составляла 21,9% ч

(Р<0,05), а молодняка контрольной и III опытной п

гр. - 21,6% (Р<0,05) в пользу контрольной гр. г

Количество образовавшегося через 3 часа после к

кормления аммиака в рубце животных I опытной I

гр. было выше соответственно на 17,3 (Р>0,05) и с

17,0% (Р<0,05), чем у аналогов II и III опытных д

гр., и на 3,9% (Р>0,05) ниже, чем в рубце молод- г

няка контрольной гр. Уменьшение концентрации аммиака в рубце животных II и III гр., видимо, было связано с усилением работы амилолити-ческой микрофлоры, приводящей к снижению рН в кислую сторону и замедлению активности действия протеолитической микрофлоры и их ферментов.

Скармливание кормовой добавки Лактомикро-цикол оказало влияние на рубцовое содержимое у подопытных животных. Бычки контрольной гр. получали основной рацион, питательность которого соответствовала установленным нормам, а в рацион телят опытных групп включали пробиотик по схеме (табл. 2).

Анализируя данные, полученные в результате эксперимента, выяснили, что наибольшая концентрация ЛЖК в рубцовой жидкости наблюдалась у бычков II опытной гр. (табл. 3).

У животных опытных групп в содержимом рубца было больше ЛЖК до кормления на 3,6-8,6%, а также после кормления - на 2,8-13,4%. Полагаем, что большее количество ЛЖК связано с тем, что положительная микрофлора рубцового содержимого более активно участвовала в процессе брожения клетчатки, который ведёт к образованию ЛЖК. Концентрация ЛЖК повлияла на среду рубцового содержимого. Если значение рН рубцового содержимого до кормления у бычков контрольной группы имело слабощелочной характер, то после

кормления среда содержимого рубца стала близка к нейтральной.

Концентрация аммиака до кормления в рубце бычков опытных групп при скармливании Лак-томикроцикола была больше, чем у особей контрольной гр.: I опытной - на 1,3%, II опытной -на 4,85%, III опытной - на 2,85%. Через 3 час. после кормления концентрация аммиака в рубце бычков I опытной гр. превышала показатель в контрольной гр. на 0,57%, II опытной - на 5,87%, III опытной - на 1,01%.

Установлено, что животные опытных групп отличались незначительным снижением уровня рН. При этом повышалась концентрация летучих жирных кислот при незначительном изменении их соотношения. Уровень аммиака и фракционный состав ЛЖК в рубце бычков опытных групп изменялся в пределах физиологической нормы.

Вывод. Препараты Бацелл, Лактомикроцикол положительно воздействуют на микробную ферментацию питательных веществ рубца жвачных животных.

Литература

1. Бабичева И.А., Никулин В.Н. Эффективность использования пробиотических препаратов при выращивании и откорме бычков // Известия Оренбургского государственного аграрного университета. 2014. № 1 (45). С. 167-168.

2. Левахин В.И., Бабичева И.А., Поберухин М.М. и др. Использование пробиотиков в животноводстве // Молочное и мясное скотоводство. 2011. № 2. С. 13-14.

3. Антонова В.С., Топурия Г.М., Косилов В.И. Методология научных исследований в животноводстве. Оренбург: Издательский центр ОГАУ, 2011. 246 с.

4. Миронова И.В., Косилов В.И. Переваримость коровами основных питательных веществ рационов коров чёрно-пёстрой породы при использовании в кормлении пробиотической добавки Ветоспорин-актив // Известия Оренбургского государственного аграрного университета. 2015. № 2 (52). С. 143-146.

5. Миронова И.В. Эффективность использования пробиотика Биодарин в кормлении тёлок / И.В. Миронова, Г.М. Дол-женкова, Н.В. Гизатова, В.И. Косилов // Известия Оренбургского государственного аграрного университета. 2016. № 3 (59). С. 207-210.

6. Мустафин Р.З., Никулин В.Н. Биохимическое обоснование применения пробиотика при выращивании молодняка КРС // Сборник научных трудов Всероссийского института овцеводства и козоводства. 2014. Т. 3. № 7. С. 457-461.

7. Никулин В.Н., Мустафин Р.З., Биктимиров Р.А. Воздействие пробиотика на рубцовое содержимое молодняка красной степной породы // Вестник мясного скотоводства. 2014. № 1 (84). С. 96-100.

8. Косилов В.И., Миронова И.В. Эффективность использования энергии рационов коровами черно-пёстрой породы при скармливании пробиотической добавки Ветоспорин-актив // Известия Оренбургского государственного аграрного университета. 2015. № 2 (52). С. 179-182.

9. Батанов С.Д., Ушакова О.Ю. Пробиотик Бацелл и пробио-тик Лактацид в рационах молочных коров // Кормление сельскохозяйственных животных и кормопроизводство. 2013. № 11. С. 26-34.

10. Мамбетов М.М., Шевхушев А.Ф., Шейкин П.А. Конверсия корма в прирост туши крупного рогатого скота // Вестник ветеринарии. 2002. № 2 (23). С. 60-64.

Эффективность сезонных отёлов коров мясного направления продуктивности

П.И. Христиановский, д.б.н., профессор, ФГБОУ ВО Оренбургский ГАУ; В.А. Гонтюрёв, к.с.-х.н., ФГБНУ ВНИИМС; С.А. Иванов, председатель, СПК (колхоз) «Аниховский», Оренбургская область

В последние годы интерес к мясному скотоводству у сельхозпроизводителей РФ значительно возрос, причём не только в районах, которые всегда специализировались на мясном скотоводстве. Мясной скот стали разводить во многих областях Нечерноземья - в Брянской, Тульской, Калужской, Тверской и др. областях, т.е. в традиционной зоне молочного скотоводства.

В современных условиях мясное скотоводство может стать рентабельной отраслью производства. Мясной скот может использовать скудные степные пастбища, хорошо переносит высокие и низкие температуры, менее требователен к составу рациона, сохранность молодняка мясных пород обычно выше, чем молочных. Помещения для мясного скота более просты и дёшевы. Кроме того, мясное скотоводство может сочетаться с молочным скотоводством или другими отраслями животноводства, которые будут дополнять друг друга .

В мясном скотоводстве наиболее технологичными являются туровые (сезонные) отёлы. Уплотне-

ние сроков отёлов коров позволяет получать телят в более благоприятный период и в дальнейшем формировать однородные гурты молодняка . В связи с этим была определена цель исследования - изучить эффективность сезонных отёлов коров мясного направления продуктивности.

Материал и методы исследования. Материалом для исследования являлись коровы и нетели казахской белоголовой породы из стада СПК (колхоз) «Аниховский» Адамовского района Оренбургской области. Для достижения сезонных отёлов быки в хозяйстве содержатся в маточных гуртах с января по июль. Ежегодно в сентябре проводится гинекологическое обследование коров на стельность и выявление причин бесплодия. Одновременно выполняется бонитировка маточного поголовья, проводится выбраковка коров по непригодности к воспроизводству и зоотехническим показателям .

При проведении исследования были применены методы ректальной диагностики стельности и анализа производственных показателей.

Результаты исследования. В СПК (колхоз) «Аниховский» растёл коров проходит с ноября по февраль, т.е. в стойловый период. При этом контролируется получение приплода, а сами телята находятся под наблюдением. В марте отёл должен

Биополимеры


Общие сведения
Существует два основных типа биополимеров: полимеры, происходящие из живых организмов, и полимеры, происходящие из возобновляемых ресурсов, но требующие полимеризации. Оба типа используются для производства биопластиков. Биополимеры, присутствующие в живых организмах, или создаваемые ими, содержат углеводороды и протеины (белки). Они могут применяться в производстве пластмасс для коммерческих целей. В качестве примеров можно привести:

Биополимеры, существующие/создаваемые в живых организмах

Биополимер

Естественный источник Характеристика
Полиэфиры Бактерии Такие полиэфиры получаются путем естественных химических реакций, производимых определенными видами бактерий.
Крахмал Зерно, картофель, пшеница и др. Такой полимер - один из способов хранения углеводородов в растительных тканях. Он состоит из глюкозы. В тканях животных он отсутствует.
Целлюлоза Древесина, хлопок, зерно, пшеница и др. Этот полимер состоит из глюкозы. Он является основным компонентом оболочки клетки.
Соевый белок Соевые бобы Протеин, содержащийся в соевых растениях.

Молекулы из возобновляемых природных ресурсов могут быть полимеризованы для использования при производстве биоразлагаемых пластиков.

Ест ественные источники, полимеризуемые в пластмассы

Биополимер

Естетсвенный источник Характеристика
Молочная кислота Свекла, зерно, картофель и др. Производится путем ферментации исходных продуктов, содержащих сахар, например, свеклы, и переработки крахмала зерновых культур, картофеля или других источников крахмала. Полимеризуется для получения полимолочной кислоты, полимера, который применяется в производстве пластмасс.
Триглицериды Растительные масла Формируют большинство липидов, входящих в состав всех растительных и животных клеток. Растительные масла - один из возможных источников триглицеридов, которые могут быть полимеризованы в пластики.

Для производства пластмассовых материалов из растений применяются два метода. Первый метод основан на ферментации, а второй использует для производства пластика само растение.

Ферментация
Процесс ферментации задействует микроорганизмы для разложения органических веществ в отсутствии кислорода. Современные общепринятые процессы используют микроорганизмы, созданные методами генетической инженерии, специально предназначенные для условий, при которых происходит ферментация, и вещество, разлагаемое микроорганизмом. В настоящее время для создания биополимеров и биопластиков существует два подхода:
- Бактериальная полиэфирная ферментация: В ферментации задействованы бактерии ralstonia eutropha, которые используют сахар собранных растений, например, зерна, для питания собственных клеточных процессов. Побочным продуктом таких процессов является полиэфирный биополимер, впоследствии извлекаемый из бактериальных клеток.
- Ферментация молочной кислоты: Молочная кислота получается методом ферментации из сахара, во многом схожим с процессом, применяемым для прямого производства полиэфирных полимеров с участием бактерий. Однако в данном процессе ферментации побочным продуктом является молочная кислота, которая затем обрабатывается традиционным способом полимеризации для изготовления полимолочной кислоты (PLA).

Пластики из растений
Растения обладают большим потенциалом, чтобы стать фабриками по производству пластмасс. Этот потенциал можно максимально реализовать при помощи геномики. Полученные гены можно вводить в зерно, применяя технологии, позволяющие разрабатывать новые пластиковые материалы с уникальными свойствами. Такая генная инженерия дала ученым возможность создать растение Arabidopsis thaliana. Оно содержит ферменты, которые бактерии используют для производства пластиков. Бактерия создает пластик путем превращения солнечного света в энергию. Ученые перенесли ген, кодирующий этот фермент, в растение, обеспечив возможность производства пластика в клеточных процессах этого растения. После сбора урожая пластик выделяется из растения при помощи растворителя. Получающаяся в результате этого процесса жидкость подвергается дистилляции для отделения растворителя от полученного пластика.

Рынок биополимеров


Сокращение разрыва между синтетическими полимерами и биополимерами
Около 99% всех пластмасс производится или получается из основных невозобновляемых источников энергии, включая природный газ, нафту, сырую нефть, уголь, которые используются в производстве пластиков и в качестве исходных материалов, и как источник энергии. В какой-то период сельскохозяйственные материалы считались альтернативным исходным сырьем для производства пластмасс, но уже более десяти лет они не оправдывают ожиданий разработчиков. Основным препятствием для использования пластиков, изготовленных на основе сельскохозяйственного сырья, стала их себестоимость и ограниченные функциональные возможности (чувствительность продуктов из крахмала к влаге, ломкость полиоксибутирата), а также недостаточная гибкость при производстве специализированных пластиковых материалов.


Прогнозируемые эмиссии CO2

Совокупность различных факторов, взлет цен на нефть, повышение интереса во всем мире к возобновляемым ресурсам, рост обеспокоенности в связи с выбросами парниковых газов, особое внимание к утилизации отходов возродили заинтересованность в биополимерах и эффективных способах их производства. Новые технологии выращивания и переработки растений позволяют сократить разницу в стоимости между биопластиками и синтетическими пластмассами, а также усовершенствовать свойства материалов (например, Biomer ведет разработку видов PHB (полигидрокибутират) с повышенной прочностью расплава для пленки, получаемой экструзией). Растущая озабоченность экологическими проблемами и стимулирование на законодательном уровне, в частности, на территории Евросоюза, возбудили интерес к биоразалагающимся пластикам. Реализация принципов Киотского протокола также заставляет обратить особое внимание на сравнительную эффективность биополимеров и синтетических материалов с точки зрения энергозатрат и выбросов CO2. (В соответствии с Киотским протоколом Европейское Сообщество обязуется за период 2008-2012 гг. снизить поступление парниковых газов в атмосферу по сравнению с уровнем 1990 г. на 8%, а Япония обязуется сократить такие выбросы на 6%).
По приблизительным подсчетам пластики на основе крахмала могут сэкономить от 0,8 до 3,2 тонн CO2 на тонну по сравнению с тонной пластмассы, полученной из органического топлива, при этом данный диапазон отражает долю сополимеров на основе нефти, используемых в пластиках. В отношении альтернативных пластиков на основе масляных зерен экономия выбросов парниковых газов в эквиваленте CO2 оценивается в размере 1,5 тонн на тонну полиола, изготовленного из рапсового масла.

Мировой рынок биололимеров
В течение следующих десяти лет ожидается продолжение быстрого роста глобального рынка пластиковых материалов, наблюдающегося в течение последних пятидесяти лет. По прогнозам, сегодняшнее потребление пластмасс на душу населения в мире увеличится с 24,5 кг до 37 кг в 2010 г. Такой рост определяется, прежде всего, США, странами Западной Европы и Японией, однако, ожидается активное участие стран Юго-Восточной и Восточной Азии и Индии, которые в течение указанного периода должны составить около 40% мирового рынка потребления пластмасс. Также ожидается увеличение мирового потребления пластмасс с 180 миллионов тонн сегодня до 258 миллионов тонн в 2010 году, при этом существенное развитие получат все категории полимеров, так как пластики продолжают вытеснять традиционные материалы, включая сталь, дерево и стекло. По некоторым экспертным оценкам за этот период биопластикам удастся прочно занять от 1,5% до 4,8% общего рынка пластмасс, что в количественном отношении составит от 4 до 12,5 миллионов тонн в зависимости от технологического уровня разработок и исследований в области новых биопластиковых полимеров. По мнению руководства компании Toyota, к 2020 году пятая часть мирового рынка пластмасс будет занята биопластиками, что эквивалентно 30 миллионам тонн.

Маркетинговые стратегии биополимеров
Разработка, уточнение и применение эффективной маркетинговой стратегии является самым важным этапом для любой компании, планирующей вложение значительных средств в биополимеры. Несмотря на гарантированное развитие и рост биополимерной промышленности, существуют определенные факторы, которые нельзя не учитывать. Следующие вопросы определяют маркетинговые стратегии биополимеров, их производства и научно-исследовательской деятельности в этой области:
- Выбор сегмента рынка (упаковка, сельское хозяйство, автомобильная промышленность, строительство, целевые рынки). Усовершенствованные технологии обработки биополимеров обеспечивают более эффективное управление макромолекулярными структурами, что позволяет новым поколениям «потребительских» полимеров конкурировать с более дорогими «специализированными» полимерами. Кроме того, при наличии новых катализаторов и усовершенствованной системы управления процессом полимеризации появляется новое поколение специализированных полимеров, созданных для функциональных и структурных целей и генерирующих новые рынки. Примерами могут стать биомедицинские виды применения имплантатов в стоматологии и хирургии, которые быстро наращивают темпы своего развития.
- Базовые технологии: технологии ферментации, растениеводство, молекулярная наука, производство сырья для исходных материалов, источников энергии или того и другого, использование генетически измененных или неизмененных организмов в процессе ферментации и производства биомассы.
- Уровень поддержки со стороны государственной политики и законодательной среды в целом: переработанные пластики в определенной степени составляют конкуренцию биоразлагаемым полимерам. Правительственные постановления и законодательные акты, относящиеся к окружающей среде и переработке отходов, могут оказать положительное влияние на увеличение продаж пластиков для различных полимеров. Выполнение обязательств Киотского протокола, вероятно, повысит спрос на определенные материалы на биологической основе.
- Развитие цепи поставок в фрагментированной индустрии биополимеров и коммерческий эффект от экономии за счет масштаба в сравнении с усовершенствованием свойств продукции, при котором она может быть реализована по повышенным ценам.

Биоразлагаемые полимеры и полимеры на основе, не содержащей нефти


Пластмассы с низким уровнем воздействия на окружающую среду
На рынке существует три группы биоразлагаемых полимеров. Это PHA (фитогемагглютинин) или PHB, полилактиды (PLA) и полимеры на основе крахмала. Другими материалами, имеющими коммерческое применение в области биоразлагаемых пластиков, являются лигнин, целлюлоза, поливиниловый алкоголь, поли-е-капролактон. Существует немало производителей, выпускающих смеси биоразлагаемых материалов, либо для улучшения свойств этих материалов, либо для сокращения производственных затрат.
Для совершенствования технологических параметров и повышения ударной вязкости PHB и его сополимеры смешиваются с целым рядом полимеров с различными характеристиками: биоразлагаемыми или неразлагаемыми, аморфными или кристаллическими с разной температурой расплава и стеклования. Смеси также используются для улучшения свойств PLA. Обычные PLA во многом ведут себя так же, как полистиролы, проявляя ломкость и низкое удлинение на разрыв. Но, например, добавка 10-15% Eastar Bio, биоразлагаемого нефтепродукта на основе полиэстера производства компании Novamont (в прошлом, Eastman Chemical), значительно повышает вязкость и, соответственно, модуль упругости при изгибе, а также ударную вязкость. Для улучшения биоразлагаемости при одновременном снижении себестоимости и сохранении ресурсов возможно смешивание полимерных материалов с природными продуктами, например, крахмалами. Крахмал представляет собой полукристаллический полимер, состоящий из амилазы и амилопектина с различными коэффициентами в зависимости от растительного сырья. Крахмал растворяется в воде, а использование агентов, улучшающих совместимость, может иметь принципиальное значение для успешного смешивания этого материала с гидрофобными полимерами, несовместимыми при других условиях.

Сравнение свойств биопластиков с традиционными пластиками

Сравнение PLA и пластиков на основе крахмала с традиционными пластиками на основе нефтепродуктов

Свойства (единицы) LDPE PP PLA PLA Крахмальная основа Крахмальная основа
Удельный вес (г/см 2) <0.920 0.910 1.25 1.21 1.33 1.12
Прочность при растяжении (МПа) 10 30 53 48 26 30
Предел текучести при растяжении (МПа) - 30 60 - 12
Модуль упругости при растяжении (ГПа) 0.32 1.51 3.5 - 2.1-2.5 0.371
Удлинение при растяжении (%) 400 150 6.0 2.5 27 886
Прочность по Изоду с надрезом (Дж/м) No break 4 0.33 0.16 - -
Модуль при изгибе (ГПа) 0.2 1.5 3.8 1.7 0.18

Свойства PHB по сравнению с традиционными пластиками

Свойства Biomer PHB в сравнении с PP , PS и PE

Прочность при растяжении Удлинение на разрыв Шор A Модуль
Biomer P226 18 - 730
15-20 600 150-450
Biomer L9000 70 2.5 3600
PS 30-50 2-4 3100-3500

С точки зрения сравнительной стоимости, существующие пластики на нефтяной основе являются менее дорогостоящими, чем биопластики. Например, цена на промышленные и медицинские сорта полиэтилена высокой плотности (ПЭВП - HDPE), также применяемого при производстве упаковки и потребительских товаров, варьируется от 0,65 до 0,75 долларов за фунт. Цена на полиэтилен низкой плотности (ПЭНП - LDPE) составляет 0,75-0,85 долларов за фунт. Полистиролы (PS) стоят от 0,65 до 0,85 долларов за фунт, полипропилены (PP), в среднем, - 0,75-0,95 долларов за фунт, а полиэтилентерефталаты (PET) - от 0,90 до 1,25 долларов за фунт. По сравнению с ними, полилактидные пластики (PLA) стоят в пределах 1,75-3,75 долларов за фунт, поликапролактоны (PCL), полученные из крахмала, - 2,75-3,50 долларов за фунт, полиоксибутираты (PHB) - 4,75-7,50 долларов за фунт. В настоящее время, учитывая сравнительные общие цены, биопластики дороже традиционных распространенных пластиков на основе нефти в 2,5 - 7,5 раза. Однако еще пять лет назад их стоимость в 35-100 раз превышала существующие невозобновляемые эквиваленты на основе органического топлива.

Полилактиды (PLA)
PLA представляет собой биоразлагаемый термопластик, полученный из молочной кислоты. Он обладает водостойскостью, но не может переносить высоких температур (>55°C). Поскольку он не растворяется в воде, микробы в морской среде могут так же разлагать его на CO2 и воду. Пластик имеет сходство с чистым полистиролом, обладает хорошими эстетическими качествами (глянец и прозрачность), но является слишком жестким и хрупким и нуждается в модификации для большинства практических применений (т.е. его эластичность увеличивается пластификаторами). Как и большинство термопластов, его можно перерабатывать в волокна, пленки, изготовленные горячим формованием или литьем под давлением.


Структура полилактида

В процессе производства зерно обычно сначала перемалывается для получения крахмала. Затем путем переработки крахмала получают неочищенную декстрозу, которая при ферментации превращается в молочную кислоту. Молочная кислота сгущается для производства лактида, циклического промежуточного димера, который применяется как мономер для биополимеров. Лактид проходит очистку путем вакуумной дистилляции. После этого в процессе расплава без растворителя открывается кольцевая структура для полимеризации - таким образом, получается полимер полимолочной кислоты.


Модуль упругости при растяжении


Прочность по Изоду с надрезом


Модуль при изгибе


Удлинение при растяжении

Компания NatureWorks, дочернее предприятие Cargill, крупнейшей частной компании в США, производит полилактидный полимер (PLA) из возобновляемых ресурсов с использованием собственной технологии. В результате 10 лет исследований и разработок на базе компании NatureWorks и 750 миллионной инвестиции, в 2002 году было создано совместное предприятие Cargill Dow (теперь дочернее предприятие NatureWorks LLC, полностью принадлежащее компании Cargill) с годовой производительностью 140000 тонн. Полилактиды, полученные из зерна и реализуемые под торговой маркой NatureWorks PLA и Ingeo, в основном находят свое применение в термоупаковке, экструдированных пленках и волокнах. Компания также разрабатывает технические возможности производства продукции литьевым прессованием.


Емкость для компоста из PLA

PLA, как и PET, требует просушки. Технология обработки аналогична LDPE. Рецикляты можно подвергать повторной полимеризации или размалывать и использовать повторно. Материал поддается полному биохимическому распаду. Изначально применявшийся в формовании листовых термопластов, производстве пленок и волокон, сегодня этот материал также используется для формования раздувом. Подобно PET, пластик на основе зерна позволяет производить целый ряд разнообразных и сложных форм бутылок всех размеров и используется компанией Biota для формования с раздувом и вытяжкой бутылок для розлива родниковой воды высшего качества. Однослойные бутылки из NatureWorks PLA формуются на том же оборудовании литья под давлением/ориентированного формования раздувом, которое используется для PET, без потери производительности. Хотя барьерная эффективность NatureWorks PLA ниже, чем у PET, он может конкурировать с полипропиленом. Более того, компания SIG Corpoplast в настоящее время осуществляет разработки по использованию своей технологии покрытий "Plasmax" для таких альтернативных материалов в целях повышения ее барьерной эффективности и, следовательно, расширения области ее применения. Материалам NatureWorks не хватает теплостойкости, свойственной стандартным пластмассам. Они начинают терять форму уже при температуре около 40°C, но поставщику удается добиваться значительных успехов в создании новых марок, которые обладают термостойкостью пластмасс на основе нефти, и, таким образом, получают новые возможности применения в упаковках для горячих продуктов и напитках, продаваемых на вынос, или продуктов, разогреваемых в микроволновой печи.

Пластики, снижающие нефтяную зависимость
Повышенная заинтересованность в снижении зависимости полимерного производства от нефтяных ресурсов также способствует разработке новых полимеров или составов. С учетом нарастающей необходимости снижения зависимости от нефтепродуктов особое внимание уделяется значимости максимизации использования возобновляемых ресурсов в качестве источника сырья. Показательным примером является использование соевых бобов для производства полиола на биооснове Soyol в качестве основного сырья для полиуретана.
Ежегодно пластмассовая промышленность использует несколько миллиардов фунтов наполнителей и усилителей. Усовершенствованная технология составов и новые связующие агенты, позволяющие повышать уровень загрузки волокон и наполнителей, способствуют расширению применения таких добавок. В ближайшем будущем уровень загрузки волокна, составляющий 75 частей на сто, может стать распространенной практикой. Это окажет колоссальное воздействие на сокращение использования пластиков на основе нефти. Новая технология высоконаполненных композитов демонстрирует некоторые весьма интересные свойства. Исследования композита 85% кенаф-термопластик показали, что его свойства, например, модуль упругости при изгибе и прочность, превосходят большинство типов древесных частиц, ДСП низкой и средней плотности, а также может в некоторых применениях конкурировать даже с ориентированно-стружечными плитами.

В последнее время мы все чаще слышим о таком процессе, как ферментация. Однако не все еще имеют понятие о том, что же она собой представляет на самом деле и как именно происходит. Преимущественно с этим термином сталкивались потребители чая и табака, однако это не единственная сфера применения процесса ферментации.

Как происходит ферментация?

Ферментация - это процесс, в результате которого происходит брожение за счет воздействия собственных ферментов продукта. Если говорить конкретно об этом процессе в растениях, то при разрушении листа происходит выделение некоторого количества сока, который вследствие окисления и способствует началу ферментации. Чтобы остановить это явление, необходимо прожарить сырье.

При помощи такой технологии получают не только высококачественный табак, но и превосходные чаи. Ведь некоторые растения при обычном сборе и последующей заварке не способны сохранить свой природный аромат и воссоздать неповторимый вкус, а процесс ферментации помогает им в этом и дает возможность раскрыть новые вкусовые качества.

Какие растения можно ферментировать?

Ферментация - это процесс, который выполняется вовсе не со всеми растениями. Некоторые в этом просто не нуждаются, а для полноценного употребления других без такой технологии никак не обойтись. Полный список трав, которые нужно ферментировать, выглядит довольно скучным и длинным. Достаточно остановить свое внимание лишь на самых популярных из них.

На первом месте уже довольно давно находится иван-чай. Он вполне может конкурировать с обычным китайским чаем по вкусовым качествам и полезным свойствам. Ферментация - это именно тот процесс, который дает этому напитку возможность приобрести привычные всем вкусовые качества чая.

При ферментировании листьев черной смородины и вишни получается великолепный запах, который по достоинству смогут оценить любители. А вот листья яблони после такой же обработки наделяются тонким ароматом, который не оставляет равнодушным никого. Очень своеобразный аромат и вкус можно получить, ферментировав листья грецкого ореха.

Многие успели заметить, что конкуренцию иван-чаю могут составить листья обычной малины. Ферментация - это процесс, который творит с ними настоящие чудеса, позволяя получить не только вкусный, но и полезный напиток.

Домашняя ферментация

Ознакомившись с самим понятием, многие сразу же представили, что весь этот процесс может происходить только в промышленных условиях, при наличии необходимого оборудования и технических условий. Однако это вовсе не так. Условия ферментации вполне допускают протекание этого процесса и дома. Главное, что необходимо сделать, - это разрушить структуру листа и пустить из него сок. Если объем небольшой, то можно просто перетереть листики руками, но при больших объемах это нереально.

В этом случае можно воспользоваться другой технологией:

  • Листья растения помещаются в полиэтиленовый пакет и несколько подвяливаются. Воздух из пакета убирается, и в течение нескольких часов на солнце происходит вяление. Появляющийся при этом воздух периодически удаляют.
  • После этого листья перетираются любым доступным способом, например, в мясорубке.
  • Далее этот метод ферментации предусматривает досушивание материала в духовке. Если его вовремя и хорошо не высушить, то может появиться плесень.

Полученный таким образом чай будет радовать вас своим неповторимым вкусом.

Ферментация табака

Этот процесс несколько отличается от аналогичного, выполняемого над травами для чая. Дело в том, что для того чтобы произвести ферментацию табака в домашних условиях, необходимо прежде всего соблюдение температурного режима и влажности листьев, которая достигает 50%. Длится этот процесс от семи до четырнадцати дней.

Одним из способов ферментировать табак является его природное старение. Для этого растение просто сушат и убирают на хранение, однако вся процедура может длиться больше года. Зато полученный таким способом материал ценится за великолепное качество.

Самый простой способ ферментации табака

Многих интересует, как наиболее быстро и без особых хлопот получить качественный табак. В этом случае ферментация табака может происходить следующим образом:

  • Листья намачиваются таким образом, чтобы они оставались сухими, но в то же время не ломались. Такую массу укладывают в банки и закрывают железными крышками.

  • В летний период банки выносятся на солнце. При этом весьма предпочтительно поставить их на металлическую поверхность, поскольку она способна накаляться и давать необходимую высокую температуру.
  • Спустя десять дней табак проверяют на готовность. Если вы чувствуете аромат, который вас устраивает, то можно достать массу из банок и хорошо просушить.

Полученный таким образом продукт вполне можно употреблять.

Ферментация при производстве удобрений

Ферментация - это процесс, который нашел применение не только при производстве чая и табака, но и при изготовлении органических удобрений. При этом появляется возможность получить эти самые удобрения гораздо быстрее, чем при обычном естественном разложении. Наверное, многие огородники не только слышали о компосте, но и имеют на своем участке компостную яму. Однако не все из них знают о том, что в основе процесса производства в ней удобрений лежит именно технология ферментации.

Тем не менее у этого чудесного метода есть и недостаток: органика в этом случае может разлагаться не полностью. Дело в том, что если масса имеет большую плотность или же слежалась, то распад ее прекращается из-за недостатка кислорода. Полученная масса, особенно если она находилась под дождем и в нее попало обильное количество воды, может издавать неприятный запах, обусловленный наличием сероводорода.

Зато с помощью ферментации можно с пользой использовать не только сорняки, которые некогда росли на вашем участке, но и утилизировать кухонные отходы (например, картофельные очистки). Теперь они будут не просто выброшенным мусором, а полноценным удобрением. Сам процесс ферментации не очень трудоемкий, а результат получается впечатляющий. Да и полученное таким образом удобрение куда безопаснее купленных в магазине химических.

Процесс изготовления чая - это последовательность взаимосвязанных шагов, в самом начале которых - свежесорванный лист, а в самом конце - то, что мы в торговле именуем «законченным» или «готовым» чаем. Шесть видов чая (зеленый, желтый, белый, улун, черный, и пуэр) имеют несколько сходных стадий обработки (такие как сбор, первичная сортировка, окончательная обработка, и т.п.), но имеют и нюансы, которые уникальны для одного или нескольких специфически приготовленных чаев. Окисление - это один из наиболее поздно описанных химических процессов, который должен протекать при изготовления одних видов чаев, и должен быть предотвращен при изготовлении других. Можно сказать, что все виды чая разделены на два больших класса в зависимости от того, участвует ли окисление в получении готового продукта, или нет.

Окисление в чае

Сначала дадим определение окислению. Окисление - это биохимический, энзимный процесс, во время которого поглощается кислород и (как следствие) происходит изменения веществ, участвующих в процессе. В случае со свежесобранными чайными листьями чая - веществ, содержащихся в чайных листьях. Окисление может быть спонтанным или контролируемым и приводить как к позитивным, так и к негативным изменениям. Хорошо знакомый пример спонтанного негативного окисления - это то, что случается, когда разрезаешь яблоко или банан, или оставляешь на открытом воздухе отрезанный кусочек листка. Незащищенные клетки поглощают кислород, размягчаются, и становятся коричневыми. Это наиболее простая форма окисления, с которой знакомо большинство людей. Если в процесс окисления не вмешиваться, то фрукт может просто высохнуть или сгнить, в зависимости от атмосферных условий. При простом разрезании яблока на кусочки и сушке их в дегидраторе (влагопоглотителе) можно наблюдать пример контролируемого негативного окисления, происходящего в процессе сушки. Потемнение отрезанной поверхности не считается эстетично привлекательным на рынке, так что изменения цвета иногда корректируют сернистыми соединениями или лимонной кислотой, но даже в этой ситуации (без видимых цветовых изменений) окисление все равно протекает.

Во время производства чая присутствует как спонтанное, так и контролируемое окисление. Спонтанное окисление протекает в течении стадии сушки чайного листа при изготовлении белого, улунского и черного чаев. Стадия контролируемого окисления, требующего особого внимания, является одной из наиболее важных этапов производства как улунов, так и черных чаев. В зеленых и желтых чаях окисление предотвращается методами тщательного пропаривания, сушки и/или прожаривания, которое также часто называют «деферментацией» (de-enzyming).

Окисление - это химический процесс, который требует избытка влажного, богатого кислородом воздуха. В производстве черного чая в помещениях для окисления должно производиться от 15 до 20 обменов увлажненного воздуха в течение часа для гарантированного полного окисление. Полифенолы в листе (чайные катехины) поглощают значительное количество кислорода, особенно в течении ранних стадий окисления. Окисление при производстве чая формально начинается с момента сушки чайного листа как спонтанное, и затем постепенно ускоряется последующими шагами, необходимыми для превращения свежего листа в готовый черный чай. После нескольких подготовительных этапов предварительно подготовленный лист готов для процесса контролируемого окисления, о котором часто ошибочно говорят как о «ферментации». В традиционном окислении сортированный лист рассыпают тонкими слоями (максимум от 5 до 8 см) на полу фабрики, на столах, на пористых поддонах - и это сходно с подсушиванием, которое делается на стадии первичного завяливания. Насыщение кислородом полифенолов начинает серию химических реакций с их участием, в конечном итоге производящих новые ароматические компоненты и обеспечивающие более «плотные» отличительные признаки настоя, характерные для черного чая. Во время первого и наиболее важного периода ферментативного окисления, фермент полифенола оксидазы и пероксидазы (группы окислительно-восстановительных ферментов, использующих в качестве акцептора электронов перекись водорода) воздействует на другие полифенолы, в результате этого воздействия появляются теафлавины. Эти красно-оранжевые соединения в дальнейшем воздействуют на полифенолы, производя теарубигины, они же химически ответственны за изменение цвета листа от зеленого к золотому, медному, коричнево-шоколадному. Теарубигины, тем временем, взаимодействуют с несколькими аминокислотами и сахарами в листе, создавая высокополимерные субстанции, которые развиваются в разнообразные и характерные ароматические компоненты, которые мы и рассчитываем иметь в черном чае.

В основном теафлавины привносят свежесть и яркость во вкус черного чая, в то время как теарубигины обуславливают его крепость, насыщенность и цвет.

В процессе окисления из чайного листа выделяется диоксид углерода и происходит повышение температуры массы окисляющихся листьев. Если температуре листа позволить подняться слишком высоко, то окисление выйдет из-под контроля; если температура слишком низко упадет, то окисление прекратится.

Массив чайных листьев в процессе управляемого окисления называется «дхул» (dhool). Окисление требует от 2 до 4 часов и может контролироваться опытным путем, а не научным. Хотя могут быть технические маркеры для определения ожидаемого завершения процесса, но также существует и множество параметров, характеризующих процесс и наблюдаемых «в живую». Поэтому лучшим методом определения момента полного окисления листа может быть экспертное визуально обонятельное наблюдение.

Чайный мастер должен контролировать толщину и равномерность слоя листьев, следить, чтобы температура была примерно 29 С, относительная влажность - 98%; и обеспечивать постоянную вентиляцию (15 или 20 полных смен воздуха в помещении в час). Также микроклимат должен быть полностью гигиеничен; бактерии могут испортить дхул.

При в процессе окисления обрабатываемый лист (дхул) получает прогнозируемую серию вкусовых параметров, свежий, насыщенный цвет и итоговую крепость. Чайный мастер может управлять окислением дхула в своей особенной манере, корректируя длительность окисления, допуская окисление в комбинации с изменением температуры/влажности в помещении для окисления. Большинство произведенных чаев дают сбалансированный настой в чашке с ярким настоем, хорошим интенсивным ароматом, и густой, насыщенной консистенцией. Когда чайный мастер определяет, что дхул окислился до желаемого уровня («полностью окисленный» - это степень, но не абсолютная), то критическая фаза контролируемого окисления останавливается завершающим процессом производства черного чая: сушкой.

Ферментация в чае

Ферментация - это важный компонент в изготовлении пуэров и прочих выдержанных чаев, таких как Люань, Любао, некоторых улунов, и т.д. Рассказ о ферментации в чаепроизводстве удобнее всего вести на примере производства пуэров. Давайте изучим, что такое ферментация и почему тщательная и искусная ферментация неотделима от производства традиционных высококачественных пуэров. Несмотря на то, что производство пуэров - это одна из старейших и простейших форм чаепроизводства, мир пуэров сложен и обширен настолько, что стал предметом пристального внимания чайных экспертов и требует особой тщательности в изучении. В любом случае мы не будем здесь исследовать специфическую комплексность производства пуэров различных типов, так как в этой статье предлагается рассматривать только более основное описание ферментации и окисления.

Ферментация - это микробная активность (деятельность) с вовлечением тех или иных видов бактерий. По определению ферментация происходит наиболее легко в отсутствии кислорода, хотя для старения незрелого шэн-пуэра идеально некоторое воздействие и окружающей среды. Несмотря на то, что обилие кислорода требуется для большинства стадий при изготовлении чая, подверженность к воздействию кислородом в производстве пуэра часто снижается или устраняется после стадии сушения чайного листа. Лист, который трансформируется в пуэр, должен быть подвергнут воздействию бактерий (или располагает бактериями по природе своей) подходящих для прохождения ферментации.

Как и в случае производства «сброженного» яблочного сидра или сыра Рокфор, необходимые для активности микроорганизмов бактерии начинают естественное воспроизводство на открытом воздухе и\или внутри специального помещения для ферментации (сидровый «домик» или камера для созревания сыров). В случае с пуэром бактерии, требующиеся и для инициирования, и для поддержания брожения находятся в следующих местах.

  1. На поверхности самого листа со старых деревьев в первобытном лесу, где растут крупнолистовые деревья - наиболее известные из них в районе Сишуанбаньны на юго-западе провинции Юньнань в Китае.
  2. В помещении для производства чая с контролируемым климатом, в которых «сырой (шэн) мао-ча» временно складируется в ожидании прессования; в кучах из «мао-ча» при искусственной ферментации готового (шу) пуэра; или во влажном, насыщенным паром климате, в котором пуэр проходит запрессовку.
  3. В сухих прохладных помещениях, где блины шэн пуэра хранятся для пост-ферментации и старения под тщательным контролем.

Во время фазы ферментации в производстве пуэра должно сойтись несколько важных факторов. Во время сбора урожая на самом листе, который соответствует нормам, должны иметься «дикие» бактерии - их может быть очень много или очень мало, и от этого тоже будет зависеть качество чая. Лист предназначенный для того, чтобы стать пуэром («маоча», прошедший сушку-завяливание, обжаривание до «убийства зелени» (sa cheen, шацин), сминание (ro nien, жоунянь), и затем частично высушенный лист), складывают в мешки и располагают эти мешки друг на друге в ожидании прессования в насыщенном бактериями пару; или, в случае готового шу пуэра, сваливается в кучи в помещениях, подвергаясь внешнему воздействию. В отличие от невысоких, пористых куч листьев, собранных для окисления, кучи мао-ча, в которых стимулируется искусственная ферментация шу пуэра, заскирдованы плотно, компактно, и с минимальной площадью открытой поверхности. Куча маоча нечасто перемешивается - чтобы дать «отдых» листьям (и не дать ферментации зайти слишком далеко), снабдить бактерии необходимым им кислородом и обеспечить температуру, желательную для благоприятного роста микробов и заданного преобразования листа. В процессе ферментации пуэра кучи часто накрывают - для того, чтобы повысить температуру происходящих в листьях процессов.

Можно представить легкое замешательство в которое приводит чайных торговцев наблюдение за процессами сушки, окисления и ферментации. Наблюдая перемешивание кучи листьев на полу, кучи листьев в траншеях или на настилах, начинающие чаеторговцы могут быть ошарашены тем, что процессы, происходящие при производстве чая, рудиментарны и кустарны (эта кустарность усугубляется нежеланием китайцев объяснять свои «секреты»). И, хотя за последние 75 лет много чего было описано, четко разделить процессы сушки, ферментации и окисления (и, соответственно, четко ими управлять) пока затруднительно.

Крайне важно, чтобы и потребители и чаеторговцы знали характерные различия окисления от ферментации. Эти процессы должны быть понятны и не должны затеряться в выкрутасах чайной терминологии или маркетинга.

Хорошим признаком, отличающим хорошего торговца, является его понимание сути производства белого, улунского и черного чаев, которые очень зависимы от процессов сушки и окисления. Использование терминов «окисление» и «ферментация» недолжным образом способствует путанице у любителей чая. Вдобавок те, кто правильно может идентифицировать, какой тип пуэра предлагается для закупки, и какие условия необходимы для полного завершения незрелого шэн пуэра в его максимальном развитии (продолжительное вызревание, выдержка, и старение), обеспечивают себя надежной закупочной базой. Для чайных энтузиастов, знание - сила, чайный мир становится все более доступным, и знание гарантирует нам все более качественный чай, и много свяких других радостных моментов настоящего удовольствия от выпитого любимого напитка.

(Еще больше информации о производстве чая и разъяснения окислительных процессов в разных типах чаев можно найти в книге The Tea Story; A Cultural History and Drinking Guide by Mary Lou Heiss and Robert J. Heiss, Ten Speed Press October 2007)

Зеленый чай Нет окисления *
Желтый чай Нет окисления *
Белый чай Легкое спонтанное окисление (8-15%)
Улунский чай Частичное окисление, контролируемое при производстве (уровень 15-80%)
Черный чай Полное окисление, контролируемое при производстве
Пуэр Полностью ферментированный, не полностью окисленный, существует два основных направления
Шэн пуэр Сырой, исходный, или «зеленый» пуэр - неконтролируемое окисление, хотя минимальное спонтанное окисление может присутствовать
Шу пуэр Готовый, зрелый, или «черный» пуэр - контролируемое окисление как существенное для процесса «ускорения старения»

* Формулировку «Нет окисления» следует понимать как «Почти нет окисления». Это такое примечание переводчиков.

  • 7. Характеристика эукариотических микроскопических организмов. Морфология дрожжей.
  • 9. Характеристика эукариотических микроскопических организмов. Отличительные черты простейших, вызывающих инфекционные заболевания.
  • 10. Морфология бактерий. Разнообразие форм. Размеры микроорганизмов. Методы изучения морфологии бактерий. Виды микроскопов.
  • 11. Морфология бактерий. Химический состав бактериальной клетки.
  • 12. Морфология бактерий. Строение и химический состав внешних слоев. Капсула, слизистые слои, чехлы.
  • 13. Морфология бактерий. Клеточная стенка грамположительных и грамотрицательных бактерий. Окраска по Граму.
  • 14. Морфология бактерий. Явление l-трансформации. Биологическая роль.
  • 15. Морфология бактерий. Бактериальная мембрана. Строение мезосом, рибосом. Химический состав цитоплазмы.
  • 16. Морфология бактерий. Запасные включения бактериальной клетки.
  • 17. Движение бактерий. Строение жгутика, толщина, длина, химический состав. Приготовление фиксированных препара-тов и препаратов живых клеток микроорганизмов.
  • 18. Движение бактерий. Виды расположения жгутиков. Функции фимбрий и пилей.
  • 19. Движение бактерий. Характер движения бактериальной клетки. Виды таксисов.
  • 20. Бактериальное ядро. Строение, состав. Характеристика днк.
  • 21. Бактериальное ядро. Особенности генетической системы бактерии. Типы репликации днк бактерии.
  • 22. Бактериальное ядро. Виды деления бактериальной клетки. Процесс деления.
  • 23. Бактериальное ядро. Формы обмена генетической информацией у бактерий. Изменчивость бактерий.
  • 24. Бактериальное ядро. Плазмиды. Биологическая роль, отличия от вирусов, виды плазмид.
  • 25. Морфологическая дифференцировка прокариот. Формы клеток. Покоящиеся формы. Процесс поддержания состояния покоя.
  • 26. Морфологическая дифференцировка прокариот. Строение эндоспоры. Химический состав, слои.
  • 27. Морфологическая дифференцировка прокариот. Биохимические и физиологические изменения в процессе прорастания эндоспроры. Факторы устойчивости эндоспор в окружающей среде.
  • 28. Морфологическая дифференцировка прокариот. Формирование споры, слои эндоспоры.
  • 29. Классификация и систематика бактерий. Классификация бактерий по Берджи. Признаки, используемые при описании бактерий. Характеристика основных групп бактерий по классификатору Берджи.
  • 30. Классификация и систематика бактерий. Категории бактерий. Особенности эубактерий и архебактерий.
  • 31. Влияние физических факторов на микроорганизмы. Отношение микроорганизмов к молекулярному кислороду. Аэробы, анаэробы, микроаэрофилы.
  • 32. Влияние физических факторов на микроорганизмы. Температура. Способность к росту при различных температурных условиях.
  • 33. Влияние физических факторов на микроорганизмы. Температура. Способность к выживанию в экстремальных температурных условиях.
  • 34. Влияние физических факторов на микроорганизмы. Влажность.
  • 35. Влияние физических факторов на микроорганизмы. Давление. Осмотическое давление. Атмосферное. Гидростатическое давление и вакуум.
  • 36. Влияние физических факторов на микроорганизмы. Лучистая энергия, уфл, ультразвук.
  • 37. Влияние химических факторов на микроорганизмы. Кислотность и щелочность. Поваренная соль.
  • 38. Влияние химических факторов на микроорганизмы. Антисептики, виды и воздействие на микроорганизмы.
  • 39. Влияние биологических факторов на микроорганизмы. Антибиоз. Виды взаимоотношений – антагонизм, паразитизм, бактериофаги.
  • 40. Влияние биологических факторов на микроорганизмы. Взаимоотношения бактерий с другими организмами. Симбиоз. Виды и примеры симбиоза.
  • 41. Принципы консервирования пищевых продуктов, основанные на методах воздействия на бактерии различных факторов внешней среды. Влияние антибиотиков.
  • 42. Питание микроорганизмов. Ферменты микроорганизмов. Классы и виды ферментов. Пути катаболизма.
  • 43. Питание микроорганизмов. Механизмы транспорта питательных веществ в клетку. Пермеазы, ионофиоры. Характеристика процессов симпорта и антипорта. Транспорт железа.
  • 45. Питание микроорганизмов. Гетеротрофные микроорганизмы. Различная степень гетеротрофности.
  • 50. Метаболизм бактерий. Брожение. Виды брожения. Микроорганизмы, вызывающие эти процессы
  • 51. Метаболизм бактерий. Фотосинтез. Виды фотосинтезирующих бактерий. Фотосинтетический аппарат.
  • 53. Метаболизм бактерий. Хемосинтез. Происхождение кислородного дыхания. Токсический эффект воздействия кислорода.
  • 54. Метаболизм бактерий. Хемосинтез. Дыхательный аппарат клетки. Метаболизм бактерий. Хемосинтез. Энергетический обмен микроорганизмов.
  • 56. Биосинтетические процессы. Ассимиляция различных веществ.
  • 57. Биосинтетические процессы. Образование вторичных метаболитов. Виды антибиотиков. Механизм действия.
  • 58. Биосинтетические процессы. Образование вторичных метаболитов. Токсинообразование. Виды токсинов.
  • 59. Биосинтетические процессы. Образование вторичных метаболитов. Витамины, сахара, ферменты.
  • 60. Регуляция метаболизма. Уровни регуляции метаболизма. Индукция. Репрессия.
  • 62. Основы экологии микроорганизмов. Экология микробных сообществ.
  • 63. Основы экологии микроорганизмов. Микроорганизмы воздуха.
  • 64. Основы экологии микроорганизмов. Микроорганизмы морских водных экосистем.
  • 65. Основы экологии микроорганизмов. Микроорганизмы солоноватых водных экосистем.
  • 66. Основы экологии микроорганизмов. Микроорганизмы пресноводных экосистем.
  • 67. Основы экологии микроорганизмов. Микроорганизмы почвенных экосистем.
  • 68. Основы экологии микроорганизмов. Микроорганизмы почв. Микориза.
  • 69. Основы экологии микроорганизмов. Круговорот углерода, водорода и кислорода.
  • 70. Основы экологии микроорганизмов. Круговорот азота, фосфора и серы.
  • 71. Основы экологии микроорганизмов. Симбионты организма человека. Пищеварительный тракт. Ротовая полость. Бактериальные заболевания.
  • 72. Основы экологии микроорганизмов. Симбионты организма человека. Пищеварительный тракт. Проблема дисбактериоза.
  • 73. Основы экологии микроорганизмов. Симбионты организма человека. Дыхательные пути, выделительная, половая система.
  • 74. Основы экологии микроорганизмов. Симбионты организма человека. Кожа, конъюктива глаза, ухо.
  • 75. Инфекция. Патогенные микроорганизмы. Их свойства. Вирулентность микроорганизмов.
  • 76. Инфекция. Инфекционный процесс. Виды инфекций. Формы инфекций. Локализация возбудителя. Входные ворота.
  • 79. Инфекция. Роль макроорганизма в развитии инфекционного процесса.
  • 81. Классификация инфекций. Особо опасные инфекции. Кишечные инфекции, аэрогенные инфекции, детские инфекции.
  • 82. Пищевые отравления и токсикоинфекции. Причины возникновения. Основные клинические симптомы.
  • 83. Пищевые токсикоинфекции. Возбудитель – бактерии рода Salmonella.
  • 84. Пищевые токсикоинфекции. Возбудитель – бактерии рода Escherichium и Shigella.
  • 85. Пищевые токсикоинфекции. Возбудитель – бактерии рода Proteus.
  • 86. Пищевые токсикоинфекции. Возбудитель – бактерии рода Vibrio.
  • 87. Пищевые токсикоинфекции. Возбудитель – бактерии рода Bacillus и Clostridium.
  • 88. Пищевые токсикоинфекции. Возбудитель – бактерии рода Enterococcus и Streptococcus.
  • 89. Пищевые токсикозы. Возбудитель – бактерии рода Clostridium.
  • 90. Пищевые токсикозы. Возбудитель – бактерии рода Staphylococcus.
  • 50. Метаболизм бактерий. Брожение. Виды брожения. Микроорганизмы, вызывающие эти процессы

    Метаболизм – совокупность разнообразных ферментативных реакций, происходящих в микробной клетке и направленных на получение энергии и превращение простых химических соединений в более сложные. Метаболизм обеспечивает воспроизводство всего клеточного материала, включая два единых и одновременно противоположных процесса – конструктивный и энергетический обмен.

    Метаболизм протекает в три этапа:

    1.катаболизм – распад органических веществ на более простые фрагменты;

    2.амфиболизм – реакции промежуточного обмена, в результате которых простые вещества превращаются в ряд органических кислот, фосфорных эфиров и пр.;

    3.анаболизм – этап синтеза мономеров и полимеров в клетке.

    Метаболические пути формировались в процессе эволюции.

    Основным свойством бактериального метаболизма является пластичность и высокая интенсивность, обусловленная малыми размерами организмов.

    К метаболическим путям у прокариот относятся брожение, фотосинтез и хемосинтез. Наиболее примитивным способом получения энергии, присущим определенным группам прокариот, являются процессы брожения.

    Брожение – метаболический процесс, присущий бактериям, характеризующий энергетическую сторону способа существования нескольких групп прокариот, при котором они осуществляют в анаэробных условиях окислительно-восстановительные превращения органических соединений, сопровождающиеся выходом энергии, которую эти организмы используют.

    брожение протекает без участия молекулярного кислорода, все окислительно-восстановительные превращения субстрата происходят за счет его «внутренних» возможностей. В результате на окислительных этапах процесса высвобождается часть свободной энергии, заключенной в молекуле субстрата, и происходит ее запасание в молекулах АТФ. Происходит расщепление углеродного скелета молекулы субстрата.

    Круг органических соединений, которые могут сбраживаться, довольно широк:

    Углеводы, спирты, органические кислоты, аминокислоты, пурины, пиримидины.

    Может быть подвергнуто сбраживанию, если оно содержит неполностью окисленные (или восстановленные) углеродные атомы

    продуктами брожений являются различные органические кислоты (молочная, масляная, уксусная, муравьиная), спирты (этиловый, бутиловый, пропиловый), ацетон, а также СО2 и Н2

    образуется несколько продуктов. В зависимости от того, какой основной продукт накапливается в среде, различают молочно-кислое, спиртовое, маслянокислое, пропионовокислое и другие виды брожений.

    В каждом виде брожения можно выделить две стороны: окислительную и восстановительную. Процессы окисления сводятся к отрыву электронов от определенных метаболитов с помощью специфических ферментов (дегидрогеназ) и акцептированию их другими молекулами, образующимися из сбраживаемого субстрата, т. е. в процессе брожения происходит окисление анаэробного типа

    Энергетической стороной процессов брожения является их окислительная часть, реакции являются окислительными

    Существует несколько исключений из этого правила: некоторые анаэробы часть энергии при сбраживании субстрата получают также в результате его расщепления, катализируемого лиазами.

    Примитивность процессов брожения заключается в том, что из субстрата в результате его анаэробного преобразования извлекается лишь незначительная доля той химической энергии, которая в нем содержится. Продукты, образующиеся в процессе брожения, все еще содержат в себе значительное количество энергии, заключавшейся в исходном субстрате.

    При дыхательном метаболизме при расщеплении глюкозы выделяется 2870,22 кДж/моль энергии, при брожении на том же субстрате извлекается 196,65 кДж/моль энергии. В процессе гомоферментативного молочнокислого брожения синтезируются 2 молекулы АТФ на 1 молекулу сброженной глюкозы; в процессе дыхания при полном окислении молекулы глюкозы образуется 38 молекул АТФ. В обоих случаях эффективность запасания выделяющейся энергии в макроэргических связях АТФ приблизительно одинакова.

    При брожении некоторые реакции на пути анаэробного преобразования субстрата связаны с наиболее примитивным типом фосфорилирования – субстратным фосфорилированием, реакции которого локализованы в цитозоле клетки, что указывает на простоту химических механизмов, лежащих в основе этого типа получения энергии.

    *Спиртовое брожение. При спиртовом брожении из пировиноградной кислоты в результате ее окислительного декарбоксилирования образуется ацетальдегид, который становится конечным акцептором водорода. В итоге из 1 молекулы гексозы образуются 2 молекулы этилового спирта и 2 молекулы углекислоты. Спиртовое брожение распространено среди прокариотных (различные облигатно- и факультативно-анаэробные бактерии) и эукариотных (дрожжи) форм.

    Способность осуществлять в анаэробных условиях спиртовое брожение: Sarcina ventriculi, Erwinia amylouora, Zymomonas mobilis, Основными продуцентами этилового спирта среди эукариот являются дрожжи –аэробы со сформированным аппаратом дыхания, но в анаэробных условиях осуществляют спиртовое брожение по пути субстратного фосфорилирования.

    *Молочно-кислое брожение бывает гомоферментативным, при котором в числе продуктов образуется до 90 % молочной кислоты, и гетероферментативным, при котором помимо молочной кислоты значительную долю в продуктах составляют СО2, этанол и/или уксусная кислота.

    а)Молочнокислое брожение (гомоферментативное) – это процесс получения энергии молочнокислыми бактериями Lactococcus lactis, Lactobacterium bulgaricum, Lactobacterium planterum и т.д., заключающийся в превращении молекулы сахара в две молекулы молочной кислоты с выделением энергии:C6H12О6 = 2СН3СНОНСООН + 0,075х106 Дж

    б)Молочнокислое брожение (гетероферментативное). В этом процессе кроме молочной кислоты в числе продуктов образуются уксусная, янтарная кислоты, этиловый спирт, углекислота и водород. Возбудителем этого процесса является E. coli.

    Процесс, подобный нетипичному гетероферментативному молочно-кислому брожению, идет при созревании рыбы пряного посола, пресервов. В этих случаях он возбуждается ароматообразующими молочнокислымим бактериями типа Streptococcus citrovorus.

    Кроме того, при порче консервов, возбуждаемой бактериями Вас. stearothermophilus и Cl. thermosaccharolyticum, в продукте накапливаются кислоты – молочная, уксусная, масляная, образование которых, вероятно, связано с процессом, подобному нетипичному молочно-кислому брожению.

    *Маслянокислое брожение вызывается облигатно анаэробными маслянокислыми бактериями Cl. pasteurianum. Глюкоза в этом энергодающем процессе превращается в масляную кислоту, водород и углекислый газ:C6H12О6 = С3Н7СООН + 2СО2 + 2Н2 + 0,063х106 Дж

    Некоторые клостридии, например, Cl. sporogenes или токсичные виды Cl. botulinum, Cl. perfringens имеют протеолитические способности и не только сбраживают углеводы, но и гидролизуют белки. Возбудители маслянокислого брожения образуют термостойкие споры, поэтому они могут сохраняться в стерилизованных консервах и вызывать их бомбажную порчу.

    Известно много других брожений, отдельные типы которых различаются составом конечных продуктов, что зависит от комплекса ферментов возбудителя брожения.

    "