Захаров инженерный метод расчета длительности ускоренных испытаний. Разработка исследование и совершенствование методов испытаний программного обеспечения средств измерений


Доводочные

Приемо-сдаточные

Исследовательские

Предварительные

(заводские)

Приемочные


Аттестационные

Периодические

Квалификационные

Типовые

Статические

Динамические
^

На надежность


Ведомственные

Межведомственные

Государственные

Безотказность

Долговечность

(ресурсные)


Ремонтопригодность

Сохраняемость

Дополнительные и прочие

Контрольные

^

Лабораторные

Стендовые

Полигонные на опытных РТК

Эксплуатационные

Ускоренные

Нормальные

Расширенные


По любому виду, в любом месте и интенсификации по решению разработчика.

^

Форсированные

Сокращенные

Сравнительные

Табл.7. Классификация основных видов испытаний

5.14.3. Контрольные испытания ПР.

Параметры ПР проверяемые при контрольных испытаниях условно делятся на шесть групп:


  1. Параметры назначения и применения:

  • тип ПР;

  • выполняемые им операции;

  • номенклатура и число единиц обслуживаемого оборудования;

  • вид обслуживаемого производства и серийность;

  • и т.п.

  1. Основные параметры и размеры: характеризующие как ПР так и его составные части:

  • номинальная грузоподъемность;

  • количество рук и захватов;

  • число степеней подвижности;

  • величины и скорости перемещений по координатам;

  • погрешность позиционирования;

  • вид системы координат в которой работает ПР;

  • тип привода, системы управления;

  • масса и габариты;

  1. Параметры безопасной и безаварийной работы:

  • сопротивление заземления;

  • сопротивление изоляции силовых цепей и цепей систем управления;

  • электрическая прочность изоляции силовых цепей;

  • отключение ПР при выходе параметров энергопитания за установленные пределы;

  • ограничение максимальных перемещений исполнительного устройства;

  • наличие блокировок автоматической работы ПР, исключающих проникновение человека в рабочее пространство;

  • надежность захватывания и удержания объекта, в том числе при внезапном отключении сети и при нажатии кнопки «аварийный стоп»;

  • и т.д.

  1. В группу эксплуатационных параметров входят:

  • нагрев узлов и компонентов;

  • потребляемая мощность;

  • расход рабочего тела;

  • помехозащищенность;

  • климатическая устойчивость;

  • виброустойчивость;

  • и др.

  1. Номенклатура параметров надежности определена по ГОСТ 4.480-87 «Роботы промышленные. Номенклатура основных показателей».

  2. Номенклатура технологических параметров зависит от типа ПР. Примерами могут служить для:
-вспомогательных (подъемно-транспортных) ПР –

  • правильность загрузки технологического оборудования и взаимодействия с ним;
-сварочных ПР –

  • формирование шва;

  • глубина проплавления;

  • наличие пор и посторонних включений;
-окрасочных ПР –

  • сплошность и толщина покрытий и т.п.
-сборочных ПР –

  • соответствие правильности сборки и работоспособности сборочного узла требованиям технической эксплуатации;
-адаптивные ПР –

  • точность и время определения требуемого параметра.

Порядок контрольных испытаний включает в себя следующие основные этапы:


  • проверка к подготовке проведения испытаний;

  • проверка ТД;

  • испытание ПР при трех состояниях:
а. При неподвижных механизмах и отсутствии нагрузки на выходных элементах (проверка ПР в исходном состоянии);

Б. При движении ПР и отсутствии нагрузки на выходных механизмах (проверка ПР на холостых режимах) ;

В. при движении ПР и нагрузках на выходных элементах (испытание ПР под нагрузкой);


  • составление протокола по результатам испытаний.
Программа проведения испытаний ПР определяется

  • ГОСТ 15.001-73 «Разработка и постановка продукции на производство. Основные положения;

  • ГОСТ 26053-84;

  • Методическими документами Росстандарта;

  • Отраслевыми нормативными документами, которые регламентируют

  • Предприятие, которое проводит испытание;

  • Место и сроки проведения испытаний;

  • Количество образцов, подвергаемых испытаниям;

  • Порядок разработки, согласования и утверждения программ испытания;

  • Перечень документов представляемых на испытании;

  • Оформление испытаний.

  1. Приемосдаточные испытания имеют своей целью контроль качества готовой продукции на соответствие ТУ по результатам принимается решение о ее пригодности эксплуатации.
Проводятся ОТК предприятия изготовителя.

Испытывается каждое изделие.

Результаты испытаний заносятся в сопроводительную документацию на ПР в виде отметки о приемки ПР.


  1. Предварительные испытания ПР проводятся для определения возможности предъявления опытных образцов на приемочные испытания.

  2. Приемочные испытания ПР служат для проверки соответствия опытных образцов ТЗ и ТУ, а так же решения вопроса целесообразности постановки ПР на производство.
Предварительные и приемочные испытания проводятся по единым программам испытаний на заводе изготовителе опытных образцов.

  1. Квалификационные испытания установочной серии проводят в целях оценки готовности производства к выпуску серийной продукции на основе отработанного производственного техпроцесса.

  2. Аттестационные испытания осуществляются по ТУ. Рекомендуется совмещать приемочные и аттестационные испытания или периодическими.

  3. Периодические испытания ПР проводятся в целях сравнения качества серийной продукции, выпущенной в разное время. Количество испытаний устанавливается в ТУ. Испытания проводятся после ПСИ.

  4. Типовые испытания ПР служат для оценки эффективности изменений, внесенных в серийное изделие. Объем и необходимость устанавливается по согласованию изготовителя с разработчиком.

Требования к условиям проведения контрольных испытаний.

На месте испытаний должна быть полная имитация реальных условий эксплуатации проверяемого образца ПР, включая:


  • состояние окружающей среды (запыленность, загазованность, влажность, температура и т.п.);

  • показатели энергопитания;

  • уровень вибраций и помех;

  • наличие объектов манипулирования согласно эксплуатационным условиям (размеры, температура, масло на поверхности, шероховатость и т.д.)
Особое внимание должно быть уделено технике безопасности на участке, где проводится испытание.

  • должен быть огражден, установлены соответствующие предупредительные надписи и знаки и запрещен вход посторонним лицам;

  • в рабочем пространстве не должно находиться посторонних предметов;

  • оборудование и приборы испытания должны быть заземлены;

  • должно быть обеспечено условие визуального контроля;

  • обслуживание и наладка должна проводится лицами, прошедшими обучение и имеющими соответствующую квалификацию и инструктаж по ТБ;

  • при работе в автоматическом режиме у пульта должен находится оператор;

  • при первых же признаках неполадок и сбоев ПР должен быть отключен;
Требования к испытываемым образцам.

На испытание ПР должен передаваться в пригодном для эксплуатации состоянии и комплектности и прошедший контроль ОТК, с соответствующей сопроводительной документацией.

Испытываемые образцы должны быть заполнены соответствующими жидкостями, подсоединены к электрической сети и пневмосети, отрегулированы в соответствии с инструкцией по эксплуатации и обкатаны до той степени, которая бы исключила возможность изменения свойств при испытании.

При проведении приемочных испытаний ПР должен испытываться в комплекте с технологическим оборудованием или имитационным стендом. ПР устанавливается в помещении с соответствующей его эксплуатации среде.

Требования к средствам измерения.

Средства измерений выбираются в соответствии с функциональными назначениями ПР, объемом испытаний, точностью определения отдельных параметров и указываются в МУ испытаний.

Средства измерения должны быть проверены, аттестованы, опломбированы и иметь соответствующий паспорт.

При замерах в показаниях должны быть внесены погрешности измерений приборов в соответствии с указаниями в паспортах.

Жесткость стендов, стоек и т.п. приспособлений для измерений и точность приборов должна быть на порядок выше замеряемых параметров.

^ Методика определения параметров и осуществления проверок специфичных для ПР устанавливается для каждого в отдельности этапа испытаний и определяется его назначением, условиями эксплуатации, требованиями к точности позиционирования и манипулирования.

Методики разрабатываются на следующие виды проверок. Должны быть проверены по методикам:


  • возможность работы механизма ПР на холостом ходу;

  • действие блокировок, обеспечивающих безотказную и безаварийную работу ПР;

  • совместная работа ПР с системой управления;

  • проверка номинальной грузоподъемности;

  • время перемещения;

  • максимальные скорости перемещений;

  • погрешность позиционирования;

  • усилие захватывания и удержания объекта;

  • испытание ПР при работе под нагрузкой на безотказность и надежность;

  • и т.п.

5.15. Ресурсные испытания ПР.

5.15.1. Особенности ресурсных испытаний - комплексные испытания, позволяющие провести прямую оценку как надежности (безотказности, ремонтопригодности, долговечности), так и основных характеристик (динамических свойств, контролепригодности, степени диагностирования и стойкости к внешним воздействиям ПР) в течение длительного периода времени. Ресурсные испытания проводятся на заводе-изготовителе.

Цель – определение фактических показателей надежности (безотказность, ремонтопригодность, долговечность) и разработка рекомендаций по их повышению.

Цель достигается оценкой показателей с помощью испытаний и сравнение их с показателями ТУ по выборкам (образцам) ПР.

В соответствии с правилами задания показателей надежности в документации устанавливается, к какому классу систем, типу режимов эксплуатации, группе надежности и принципу ограничения длительности использования относится испытуемая выборка (образец) ПР.

На основании установленной классификации выбираются показатели надежности , по которым проводится оценка выборок, прошедшей ресурсные испытания.

В качестве основного показателя безотказности целесообразно использовать среднюю наработку на отказ (между отказами).

ремонтопригодности целесообразно использовать среднее значение:


  • время восстановления;
- оперативной трудоемкости текущего ремонта и межремонтного обслуживания;

  • оперативной трудоемкости среднего ремонта;

  • оперативной трудоемкости капитального ремонта.
В качестве основных показателей долговечности целесообразно использовать средние значения:

  • ресурса;

  • ресурса до капитального ремонта;

  • срока службы;

  • срока службы до капитального ремонта.
Динамические свойства оцениваются по специальной подпрограмме в зависимости от целей и задач испытаний.

Конролепригодность проверяется по ГОСТ26656-8.

5.15.2. Условия проведения ресурсных испытаний (РИ).

Подразделяются на:


  • испытания в нормативном режиме (НР);

  • ускоренном режиме (УР).
Здесь проводится расчет времени наработки, коэффициента ускорения оценки ресурса (по скорости движения, по значениям перемещений, по силе инерции, по числу изменений режимов, по температуре, по напряжению эл.сети, по вибрации и т.п.) и расчет среднего значения коэффициента ускорения оценки ресурса по каждой программе испытаний.

Составные части РИ . К ним обносится – предварительная, основная и заключительная части РИ.

Предварительная часть включает функциональный и расчетно-конструкторский анализ.

^ Функциональный анализ проводится разработчиком и сводится к определению, к какой из функциональных групп относится ПР и в зависимости от этого выбирается критерий работоспособности и назначаются соответственно режим и нагрузочное воздействие при последующих испытаниях.

^ Расчетно-конструкторский анализ проводится после функционального и здесь определяется, прогнозируется наиболее слабые элементы, которые могут в значительной степени повлиять на ресурс ПР в целом.

^ Основная часть ресурсных испытаний состоит из испытаний в нормальном (НР) и ускоренном режиме (УР), включающих контрольно-определительные испытания (КОИ) и испытания слабых элементов (ИСЭ).

КОИ – проводятся в целях подтверждения правильности выбора слабых элементов, а также определения конструктивных и технологических дефектов изготовления, которые проявляются в 1,5-2 мес. КОИ. Этому способствуют ускоренные испытания. В результате КОИ определяют узлы, влияющие на функционирование.

ИСЭ – проводят ускоренными методами и подразделяют на испытание на функционирование, изнашивание, усталость и оценку внезапно проявляющихся отказов, долговечность.

ИСЭ на функционирование с целью получения статистических данных проводится во всех случаях, когда к ПР предъявляются высокие требования по точности позиционирования.

Объем выборок для РИ в НР и УР – минимальный в три выборки.

Порядок подготовки ПР к РИ должен соответствовать ТУ и ПИ (программа испытаний).

^ 5.15.3. Программы ресурсных испытаний.

Все РИ начинаются с проверки технических характеристик и конструктивных параметров требованиям ТУ в объеме ПСИ.

Составные части программы РИ в НР :


  • программа1, представляющая КОИ с воздействием на ПР различных факторов;

  • программа2, представляющая ИСЭ с воздействием на ПР различных факторов.
Программа 1 состоит из следующих этапов :

  • этап 1 – испытания по определению фактических показателей надежности ПР в нормальных условиях в соответствии с ТУ; Продолжит. 500ч + t ПСИ

  • этап 2 – испытания по определению фактических показателей надежности ПР при различных комбинациях значений, воздействующих на ПР внешних факторов. Выбор комбинаций, воздействующих факторов каждый раз определяется на основании имеющейся информации математической модели влияния факторов на ПР и его показатели надежности. Продолжит. 3000 – 3200 ч.
В качестве воздействующих факторов можно брать:

  • скорость руки манипулятора;

  • перемещение руки манипулятора;

  • грузоподъемность;

  • число изменений режимов работы;

  • температуру окружающей среды;

  • и т.д.
Наиболее активно воздействующими можно считать факторы:

  • температуру окружающей среды;

  • запыленность, загазованность;

  • напряжение эл.сети;

  • вибро нагрузки;

  • давление в сети пневмо-гидро.
Все значения должны соответствовать эксплуатационным или учитывать влияние окружающей среды по соответствующим нормам и правилам при испытании (уменьшении или увеличении времени и режим).

^ Программа 2 состоит из следующих этапов РИ :


  • этап 3 – испытания по определению фактических показателей надежности ПР при различных комбинациях, воздействующих на ПР внешних факторов. При суммарной наработке 5000 – 6000ч. проводится частичная дефектация с целью определения необходимости капитального (среднего) ремонта. Продолжит. этапа 1150 –1350ч.

  • этап 4 – испытания по определению фактических показателей надежности ПР при различных комбинациях значений, воздействующих на ПР внешних факторов. Режимы аналогичны 2,3 этапам. Продолжительность 4500 – 5000 ч.
Разрешается, выявленные на этапах 1-3 слабые элементы испытать отдельно тогда этап 4 не проводится.

^ Составные части программы испытаний ПР в ускоренном режиме.

Программа 1 – ускорение КОИ с форсированием воздействия различных факторов на ПР;

Программа 2 – ускорение ИСЭ с форсированием воздействия различных факторов на ПР.

^ Программа 1 включает следующие этапы:

Этап 1 – определение фактических показателей надежности в НР в соответствии с ТУ на ПР коэффициент ускорения оценки ресурса К=1. Суммарная наработка Т= 350 + Т ПСИ (200-300)ч.


  • этап 2 – определение фактических показателей надежности при различных наиболее неблагоприятных комбинациях форсированных значений, воздействующих внешних факторов. Режим испытаний ускоренный для 50% общего времени испытаний.
Форсирование испытаний осуществляется по рекомендациям и методическим указаниям.

^ Программа 2 состоит из следующих этапов:


  • этап 3 – испытание ПР в ускоренном режиме при различных комбинациях максимального(min) допустимых по ТУ значений, воздействующих внешних факторов. Для 50% общего времени испытаний К≥4,2. При этом реализуются режимы 1÷12. Общая продолжительность режимов 40÷60 часов. Нижний предел режима 400 часов, верхний 500 часов. Для остального времени К≥3,15.

  • этап 4 – испытания в УР при значениях, воздействующих внешних факторов, превышающих допустимые по ТУ.
Для 50% общего времени испытаний К≥7,25. Общая продолжительность каждого режима 30÷50 часов. Нижний предел продолжительности - 300, верхний – 400 часов.

  • этап 5 – испытания в УР до предельного состояния (до разрушения) при наиболее неблагоприятных комбинациях, воздействующих внешних факторов, превышающие предельно-допустимые по ТУ в 2 раза. Продолжительность этапа 300÷400 часов. Для 50% общего времени испытаний К≥3,15, для остального - К≥33,5.

^ 5.15.4.Методика проведения ресурсных испытаний.

Последовательность РИ :


  • проверка соответствия технических характеристик и конструктивных параметров ПР требованиям ТУ в объеме ПСИ или объеме, обеспечивающем проверку правильности функционирования ПР в нормальных условиях по ТУ на ПР;

  • проведение КОИ по программе 1;

  • проведение ИСЭ по программе 2. Разрешается по согласованию с разработчиком и по программе 1 РИ проводятся в 2 смены (16 час.).
Продолжительность непрерывной работы на режимах 1÷12 на этапах 2÷5 в УР на менее 6 ч. и не более 8 час.

РИ проводятся с восстановлением работоспособности, отказавших ПР. Разрешается замена устройства программного управления с последующим увеличением срока испытания.

^ Методика проведения КОИ включает :


  • выявление в процессе наработки слабых элементов, а также определение конструкторских и технологических дефектов изготовления;

  • определение числа отказов на 1000 ч. наработки;

  • сбор данных для определения среднего времени восстановления;

  • сбор данных для определения среднего ресурса;

  • сбор данных для оценки законов распределения показателей безотказности, ремонтопригодности, долговечности;

  • сбор данных для оценки динамических свойств;

  • сбор данных для оценки соответствия ПР паспортным характеристикам по ТУ;

  • сбор данных по оценке стабильности работы испытываемых ПР;

  • сбор данных по оценке конролепригодности и диагностируемости ПР;

  • сбор данных по оценке виброустойчивости и вибропрочности ПР.
Методика ИСЭ ПР содержит по форме составляющие перечисленные выше.

Все методики как КОИ так и ИСЭ разрабатываются и составляются в соответствии с методическими указаниями Госстандарта.

^ 5.15.5. Межремонтное обслуживание и ремонт.

Табельное межремонтное обслуживание – профилактическое обслуживание является составной частью технического обслуживания и проводится на основании руководств и инструкций по эксплуатации для ПР в целом, манипулятора, СУ и привода.

На выполнение работ по ремонту при РИ составляется калькуляция, сводная ведомость трудозатрат и карты ремонта.

По любым видам испытаний ремонта во время испытаний делается вывод о корректировке КД и ТД или изменении режимов.

В настоящие время в лабораторных и стендовых испытаниях применяют следующие способы проведения испытаний:

Последовательный;

Параллельный;

Последовательно-параллельный;

Комбинированный.

При последовательном способе проведения испытаний один и тот же объект испытаний последовательно подвергается всем предусмотренным программой видам испытаний. Исключение составляют испытания при воздействии большинства химических и биологических ВВФ. Эти испытания проводят на различных выработках. Важнейшим условием проведения последовательных испытаний является соблюдение определенного порядка воздействия внешних факторов. Для скорейшего выявления потенциально ненадежных образцов и, следовательно, сокращения времени испытаний предусматривают такую последовательность ВВФ, при которой вначале действуют наиболее сильно влияющие на данный объект ВФ. Однако при этом теряется большая часть информации о влиянии других факторов, которая могла быть получена при их воздействии. Поэтому чаще на практике рекомендуется начинать испытания с воздействия на ЭС наименее жестких внешних факторов. Но при этом значительно увеличивается время проведения испытаний. Как видно, последовательность проведения испытаний ЭС играет важную роль. Поэтому для каждого вида ЭС устанавливается своя последовательность, которая указывается в ТУ или программе испытаний.

Характерной особенностью последовательного способа проведения испытаний является наличие эффекта накопления деградационных изменений в физической структуре объекта испытаний по мере перехода от одного внешнего ВФ к другому, в результате чего каждое воздействие предыдущего фактора оказывает влияние на результат испытаний при воздействии последующего, что, в свою очередь, усложняет интерпретацию результатов испытаний.

При параллельном способе проведения испытаний образец подвергается одновременному воздействию различных ВФ одновременно (параллельно) на нескольких выборках. Такой способ позволяет получить больший объем информации за более короткий промежуток времени, чем последовательный способ. Однако параллельный способ требует значительно большего числа испытываемых изделий, чем последовательный.

Последовательно-параллельный способ является компромиссным между последовательным и параллельным. Он позволяет в каждом конкретном случае более эффективно использовать преимущества того или иного способа. При последовательно-параллельном способе все изделия, отобранные для испытаний, разбиваются на несколько групп, которые испытываются параллельно. В каждой из групп испытания проводят последовательно. В данном случае все испытания должны быть разбиты на группы, число которых равно числу испытуемых групп. По своему составу группы испытаний должны формироваться так, чтобы, с одной стороны, продолжительность испытаний во всех группах была примерно одинаковой, а с другой, чтобы условия проведения объединенных в группу видов испытаний были близки к реальным.

Рассмотрим пример группирования различных видов испытаний при последовательно-параллельном способе их проведения .

Однако каждый из рассмотренных способов проведения испытаний предусматривает раздельное воздействие на объект ВФ, что является существенным отличием от реальных условий эксплуатации.

При комбинированном способе проведения испытаний на объект испытания одновременно воздействуют несколько внешних факторов (в основном, два).

Выбор сочетаний совместных воздействий различных факторов на испытываемое ЭС может производиться в соответствии с таблицей 6.1.

Основной причиной ограничения применения комбинированного способа проведения испытаний является отсутствие необходимого оборудования, а также сложность и дороговизна их проведения.

В заключение следует отметить, что многообразие разрабатываемой и выпускаемой аппаратуры не позволяет дать однозначной рекомендации по выбору способа и порядка проведения испытаний. Но можно с полной уверенностью сказать, что выбор того или иного алгоритма проведения испытаний должен проводиться исходя из условий его последующей эксплуатации, чтобы в процессе испытаний механизм отказов усиливался и все потенциально ненадежные образцы были обязательно выявлены.

Планирование испытаний

Проведению испытаний предшествует этап планирования, по результатом которого устанавливается необходимая совокупность данных о видах испытаний, об объемах испытуемых партий (выборок или проб), о нормах и допусках на контролируемые параметры и правила принятия решений.

Планирование испытаний имеет целью оптимизировать эксперимент по оценке (контролю) свойств ЭС. Такая оптимизация проводится по двум основным критериям, это - достоверность (точность) оценки свойств или экономическая эффективность испытаний.

В результате планирования испытаний необходимо ответить на следующие вопросы:

Целесообразно ли проводить испытания;

Какие должны быть характеристики плана испытаний.


Таблица 6.1



Целесообразность проведения испытаний определяют исходя из ожидаемого экономического эффекта.

Известно, что с ростом затрат на обеспечение качества (затраты на испытания, включая затраты на контроль) растет уровень качества и снижаются потери от брака и отказов. В связи с этим каждому показателю качества соответствует определенное соотношение между затратами, при которых введение испытаний экономически оправдано.

Пусть введение испытаний позволяет уменьшить число отказов у потребителя за определенный период на Dn, при этом у изготовителя число забракованных изделий возросло на Dn. При стоимости отказа С 0 (затраты на обнаружение отказа, ремонт, потери в результате простоя на ремонте, расходы на ликвидацию последствий отказа), стоимости изготовления одного отказавшего изделия С изг и стоимости испытаний С исп экономически оправдано введение испытаний при

DnC 0 /(DNC изг +С исп)>1, (1)

где DN – рост числа забракованных изделий.

Необходимые для оценки по формуле (1) первоначальные данные могут быть получены по результатам анализа экономических параметров предшествующих образцов или конструктивно-технологических аналогов.

Определив целесообразность проведения испытаний, приступают к их непосредственному планированию, в ходе которого разрабатывается программа испытаний и определяются характеристики плана испытаний.

Программа испытаний является основополагающим документом для проведения испытаний на стадии разработки и производства.

Программы испытаний различают по определяемым характеристикам ЭС. Они могут быть предназначены для проведения функциональных испытаний и испытаний на надежность. При разработке программ функциональных испытаний нужно предусмотреть, что их результатом является определение показателей качества и, главным образом, определение технических характеристик изделий, а при составлении программ испытаний на надежность, главным является общая оценка случайного события результата испытаний: положительный исход или отказ, а также установление времени работы до отказа.

Также следует различать программы испытаний, проводимые на стадиях разработки и производства, т.к. их задачи различаются.

Правильная организация испытаний на начальном этапе разработки ЭС позволяет сократить время на разработку данного ЭС. Это достигается за счет осуществления следующих мероприятий:

Проведения лабораторных испытаний прототипов разрабатываемых изделий с целью выдать проектировщикам данные и характеристики по результатам испытаний для построения математических и физических моделей и их дальнейшего исследования;

Проведения лабораторных корреляционных испытаний макетов в целях использования результатов для сравнения с данными, полученными в процессе математического моделирования и внесения необходимых поправок в модель;

Уточнения в процессе лабораторных испытаний правильности задания внешних воздействий и проверки на модели уточненных значений сигналов, имитирующих внешние воздействия;

Выявление в процессе лабораторных испытаний нерешенных проблем.

По результатам испытаний на стадии разработки должны быть даны рекомендации по усовершенствованию принципиальных схем и конструкций ЭС.

Основанием для разработки программы испытаний являются ТУ или ТЗ на ЭС. Программа испытаний должна предусматривать решение следующих основных задач.

1. Выбор объекта испытаний проводится на основе классификации изделий по функционально-конструктивному признаку (классы деталей, узлов, приборов, комплексов и систем) С точки зрения испытаний все классы изделий можно разделить на две группы:

Низшая группа включает в себя изделия, не имеющие самостоятельного эксплуатационного назначения (детали, узлы и блоки). Высшая группа соответственно содержит в себе изделия, имеющие самостоятельное эксплуатационное назначение.

Решение о проведении испытаний для низшей или высшей группы принимается конкретно для каждого случая.

Испытания изделий низшей группы позволяет применять более простое, дешевое и менее объемное испытательное оборудование. При таких испытаниях оказывается возможным быстро обнаружить слабые места конкретного изделия, так как на испытуемое изделие в процессе испытаний не оказывают влияния взаимодействующие с ним элементы. При этом возможно более быстрое принятие мер по усовершенствованию изделий и устранению обнаруженных неисправностей.

Испытания изделий высшей группы обеспечивают получение результатов, учитывающих взаимодействие различных узлов и блоков при меньшем числе образцов и за более короткое время.

В зависимости от класса изделий в программе испытаний может быть предусмотрена замена отказавших элементов в процессе испытаний.

2. Определение назначения (цели) испытаний , которое зависит от того, на какой стадии «жизненного» цикла изделия предполагается проводить испытания и какие характеристики изделия представляют интерес. В зависимости от стадии жизненного цикла изделия выбирают условия и место проведения испытаний.

Очевидно, что на стадии разработки, когда осуществляются исследовательские испытания, наиболее вероятным является проведение лабораторных испытаний. Однако в некоторых случаях возможно осуществление и полигонных испытаний.

На стадии производства также наиболее широкое применение получили лабораторные испытания. При этом возможно проведение стендовых, полигонных и даже эксплуатационных испытаний.

3. Выбор состава видов испытаний на воздействие внешних факторов осуществляется на основании требований, предъявляемых НТД на изделие, а также стандартов, предусматривающих перечень видов испытаний для изделий, предназначенных для эксплуатации только в районах с тропическим или холодным климатом. Выбирая виды испытаний, необходимо учитывать их различие не только по виду воздействующего фактора, но и по методу и режиму проведения. Важно определить, какие виды испытаний объединить для проведения комбинированных испытаний. В случае испытаний на стадии разработки следует установить, какие виды испытаний можно моделировать, а какие необходимо осуществлять с применением средств испытаний. Решение этого вопроса зависит от наличия испытательного оборудования, стоимости испытаний и от наличия высококвалифицированного персонала.

4. Оценка условий и места проведения испытаний зависит от стадии жизненного цикла изделия, а также от его технических особенностей. Очевидно, что на стадиях разработки и производства наибольшее применение имеют лабораторные, стендовые и полигонные испытания. Натурные и эксплуатационные - могут быть реализованы в целях получения необходимых данных для усовершенствования изделия.

5. Выбор испытательных режимов проводится в соответствии с действующими НТД на испытуемое изделие. На практике пользуются тремя видами норм на значения параметров испытательных режимов:

Предельные нормы;

Испытательные нормы;

Эксплуатационные нормы.

Предельные нормы это нормы, на которые рассчитывают изделия, приводятся в техническом отчете, и по ним испытания не проводятся.

Испытательные нормы , характеризуемые степенями жесткости, значения которых зависят от климатического и механического испытания изделия, указываются в ТУ. Испытательные нормы отличаются от предельных на величину производственного допуска. По ним проводятся испытания в процессе производства.

Эксплуатационные нормы ниже испытательных, указываемых в ТУ. В соответствии с эксплуатационными нормами разрешается эксплуатация изделий, и по ним проводятся испытания в процессе эксплуатации.

6. Определение контролируемых параметров испытуемых изделий, их значений и допустимых пределов отклонений осуществляется при различных внешних воздействиях. Одновременно должен быть определен перечень других показателей качества, которые подлежат контролю, а также допустимые пределы отклонения их значений в процессе испытаний. Также должны быть указаны режимы работы испытуемых изделий в процессе испытаний и продолжительность работы в данных режимах. Для контроля состояния ряда изделий необходимо уделять большое внимание визуальному осмотру и осуществлению методов неразрушаемого контроля.

7. Установление продолжительности каждого вида испытаний зависит от назначения (цели) испытаний, а также от определяемых характеристик изделия. При проведении функциональных испытаний продолжительность испытаний обычно задается НТД. Однако необходима разработка методик расчета продолжительности испытаний в зависимости от условий и продолжительности реальной эксплуатации. При испытаниях на надежность в основу разработки должны быть положены вероятностные и статистические методы, позволяющие обеспечить научно обоснованное планирование испытаний и оценку результатов. При этом продолжительность испытаний зависит от времени наработки на отказ для восстанавливаемых изделий и средней наработки на отказ для невосстанавливаемых изделий (в таком случае она может быть определена расчетным путем). Также следует установить, какова должна быть продолжительность испытаний в зависимости от того, планируется ли проведение нормальных, ускоренных или сокращенных испытаний.

8. Выбор последовательности (способа) проведения испытаний является одним из основных элементов программы испытаний - в ряде случаев может предусматриваться в НТД на изделие. В принципе, для обеспечения достоверности испытаний при выборе последовательности их проведения следует исключать сочетания воздействий ВФ, не соответствующих условиям эксплуатации.

9. Оценка общей продолжительности испытаний на все виды воздействия проводится на основании установленных ранее продолжительностях каждого вида испытаний и последовательности их проведения. При этом в случае выбора параллельно-последовательного способа может возникнуть необходимость пересмотра видов испытаний, включенных в параллельные группы для выравнивания общей продолжительности испытаний во всех группах.

10. Определение количества испытуемых изделий, так же как и установление продолжительности каждого вида испытаний, зависит от назначения (цели) испытаний и определяемых характеристик. Только при испытаниях на надежность число испытуемых изделий может быть определено расчетным путем при условии, что заданы вероятность безотказной работы, риск заказчика и поставщика, а также закон распределения отказов. Принято считать, что для восстанавливаемых изделий внезапные и постепенные отказы следуют экспоненциальному закону, а для невосстанавливаемых – биноминальному закону. Установив количество изделий, необходимых для испытаний, следует отобрать их из числа проверенных ОТК и в специальном документе указать номера.

11. Установление периодичности (срока) проведения испытаний изделий зависит от того, к какой группе они принадлежат. Периодичность проведения испытаний изделий низшей группы обычно больше, чем у высшей группы изделий, но в обоих случаях она зависит от вида производства и количества изделий, выпускаемых за контролируемый период. Периодичность испытаний следует указывать в ТУ на изделие; отбор изделий для испытаний осуществляется в порядке, предусмотренном в ТУ, из числа прошедших приемо-сдаточные испытания.

12. Выбор средств испытаний и определение характеристик приспособлений для установки испытуемых изделий в климатические камеры и на столах стендов для механических испытаний, в зависимости от конструкции, габаритных размеров и массы испытуемых изделий, проводится с учетом всех запланированных видов испытаний, а также требований к испытательным режимам и допускам на них. От качества приспособлений существенно зависит достоверность результатов испытаний. Для некоторых изделий приспособления унифицированы, и на них имеются НТД. В принципе необходимо, чтобы для изделий одного типа при испытаниях на различных предприятиях использовались одинаковые приспособления. Это обеспечивает идентичность условий проведения испытаний и повышает достоверность при проведении сравнения результатов испытаний.

13. Выбор средств измерений, используемых для контроля значений параметров изделий с заданными допусками, производимого до испытаний, во время них и после испытаний, завершается оформлением перечня с указанием их типов. Результаты этого контроля являются основными критериями оценки качества испытуемых изделий.

14. Разработка требований автоматизации процесса испытаний, регистрации и обработки результатов испытаний предусматривает применение ЭВМ, позволяющих обеспечить управление процессом испытаний, сбор измерительной информации, обработку сигналов, интерпретацию данных испытаний с представлением результатов в удобной форме, а также динамическое моделирование процессов испытаний. Для реализации перечисленных функций ЭВМ должна быть оснащена соответствующим программным обеспечением. При необходимости возможно совместное применение ЭВМ и средств измерений (например ЭВМ и газоанализатор, ЭВМ и самопишущий вольтметр и т.д.).

15. Метрологическое обеспечение процесса испытаний, реализуемое аттестацией всего испытательного оборудования и проверкой средств измерения значений параметров испытательных режимов и испытуемых изделий. Для осуществления аттестации должны использоваться специально предусмотренные НТД средства измерения, обладающие требуемыми точностными характеристиками. Аттестация должна осуществляться с заданной периодичностью.

Проведение испытаний предусматривает соблюдение правил техники безопасности и производственной санитарии . Наряду с общими требованиями, излагаемыми в соответствующих НТД, для различных видов испытаний должны предусматриваться специальные требования, приводимые в методиках испытаний.

В программе испытаний следует указать организацию, которая должна проводить испытания, и организации, участвующие в испытаниях. Помимо всего, в программе испытаний должно предусматриваться материально-техническое обеспечение испытаний, в том числе перечень и сроки поставок испытуемых изделий.

Кроме того, в программе испытаний указываются:

Состав участников испытаний;

Порядок их доступа к проведению испытаний;

Распределение обязанностей по проведению испытаний и составлению отчетной документации.

В заключение должны приводиться требования к отчетности и формулировка рекомендаций о дальнейшем использовании испытуемых изделий. При этом указываются критерии, которыми следует руководствоваться при решении вопроса об использовании испытуемого изделия после завершения всей программы испытаний (списание и уничтожение, ремонт и техническое обслуживание с последующим применением по прямому назначению с ограничениями или без).

  • III. Особенности проведения расследования несчастных случаев, происшедших в организациях и у работодателя - физического лица

  • 480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

    240 руб. | 75 грн. | 3,75 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Автореферат - 240 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

    Трушин Евгений Иванович. Исследование и разработка методов и средств ускоренных испытаний трансмиссий угледобывающих машин: ил РГБ ОД 61:85-5/333

    Введение

    Глава I. Состояние вопроса. задачи и методология исследований

    1.1. Долговечность трансмиссий режущих частей очистных комбайнов и методі ее определения 9

    1.2. Опыт проведения стендовых ресурсных ускоренных испытаний зубчатых трансмиссий в других отраслях машиностроения 4S

    1.3. Анализ конструкций стендов для ресурсных испытаний трансмиссий

    1.4. Испытания трансмиссий режущих частей очистных комбайнов 50

    1.5. Задачи исследования 57

    1.6. Общая методология исследований 58

    Глава 2. Совдание методики стендовых ресурсных ускоренных испытаний трансшссий режущих частей очистных комбайнов

    2.1. Область применения и задачи ускоренных испытаний Q4

    2.2, Расчет режимов нагружения при стендовых ресурсных испытаниях ^

    2.3, Обоснование и разработка критериев предельного состояния объекта испытаний 54

    2.4. Виды повреждений и методика дефектировки зубчатых передач трансмиссий очистных комбайнов $5

    2.5. Определение эксплуатационного ресурса по результатам стендовых испытаний

    2.6. Точность оценки эксплуатационного ресурса по результатам стендовых ускоренных испытаний 65

    Глава 3. Универсального нагрузочного стенда для ускоренных ресурсных испытаний трансмиссий резщих частей очистных комбайнов

    3.1. Конструктивные особенности очистных комбайнов, обуславливающие компоновочные решения стенда 72

    3.2. Принципиальные схемы стендов для ресурсных испытаний трансмиссий режущих частей очистных комбайнов 76

    3.3. Основные технические требования к универсальному нагрузочному стенду /

    3.4. Разработка и создание универсального нагрузочного стенда

    Глава 4. Экспериментальные исследования и ускоренные ресурсные испытания трансшссий рещих частей очистного комбайна

    4.1. Методика экспериментальных исследований. 90

    4.2. 97

    4.3. Определение экспериментального коэффициента перехода от ресурса при стендовых испытаниях к эксплуатационному ресурсу 40$

    Выводы №

    Глава 5. Анализ результатов экспериментальных исследований

    5.1. Развитие усталостного выкрашивания зубьев шестерен в процессе исчерпания ими ресурса МО

    5.2. Сопоставление результатов расчета зубчатых колес комбайна IKI0I на контактную выносливость с их фактической долговечностью. /2о

    5.3. Дальнейшее совершенствование конструкции испытательного стенда /30

    5.4. Перспективы развития работ по ускоренным стендовым ресурсным испытаниям /32

    5.5. Народнохозяйственный эффект от внедрения методики и средств для ускоренных ресурсных испытаний трансмиссий режущих частей очистных комбайнов. 435

    Выводы /37

    Общие выводы по работе /39

    Литература

    Введение к работе

    В основных направлениях экономического и социального развития СССР на I98I-I985 годы и на период до 1990 г. намечено "ускорить разработку и освоение серийного производства высокопроизводительных комплексов оборудования для выемки угля в сложных горно-геологических условиях и проведения подготови -тельных выработок...Увеличить производственные мощности угольного машиностроения, с тем чтобы полностью удовлетворять потребности народного хозяйства в высокопроизводительном надеж -ном горно-шахтном оборудовании...".

    Прогресс современного угольного машиностроения, предполагающий дальнейшее совершенствование технических параметров машин, невозможен без обеспечения их высокой долговечности, одним из основных показателей которой является технический ресурс

    Опыт эксплуатации свидетельствует о том, что долговеч -ность горных машин еще не соответствует требуемому уровню. Так, средний межремонтный срок службы основных серийных очистных комбайнов IKIOI, 2К52, ІГШ68 составляет 12 месяцев (1500 часов машинного времени, что значительно меньше их расчетной долговечности 5000 ч.) .

    Долговечность очистного комбайна в значительной степени определяется ресурсом трансмиссии привода его исполнительного органа (режущей части); машина выдается в капитальный ремонт практически только после достижения трансмиссией предельного состояния. Это объясняется тем, что корпусные детали редукторов являются основным несущим элементом всей конструкции комбайна, а трудоемкость ремонта трансмиссии в лаве весьма велика.На простои режущих частей комбайна ІКІ0І приходится 19,1$, 2К52 -21,7^, НШЗМ - 9,9$ простоев комбайнов в целом, трудоемкость устране - ния отказов по трансмиссиям составляет соответственно 26,2$, 33,5$ и 12,7$ от общей трудоемкости (данные ИГД им.А.А.Скочин-ского)

    В процессе создания новых и производства серийных машин, а также при проведении капитальных ремонтов, показатели долговечности машин должны проверяться экспериментальным путем. Получение данных о долговечности изделий угольного машиностроения базируется до настоящего времени на результатах наблюдений за их эксплуатацией. Из-за сложных условий эксплуатации для получения количественных характеристик долговечности с требуемой точностью требуется время, исчисляемое годами. Вследствие этого в серийное производство запускаются машины, долговечность которых определена практически только расчетным путем, т.к. наработка за время приемочных испытаний опытного образца составляет всего 5-10$ от заданного ресурса. Мероприятия по повышению качества серийной продукции, осуществляемые без достаточно представительной экспериментальной проверки, оказываются не всегда эффективными. Таким образом, одной из причин недостаточной долговечности трансмиссий очистных комбайнов является от -сутствие оперативного контроля качества их изготовления и ремонта.

    В последние два десятилетия широкое применение для оценки ресурса деталей, сборочных единиц и машин в сборе получили стендовые ускоренные ресурсные испытания вероятностные методы расчета деталей машин на усталость позволили обосновать выбор запасов прочности и допускаемых напряжений на основе вероятностных аспектов о разрушении и надежности в условиях эксплуатации.

    Применительно к горным машинам расчетные методы прямой или косвенной оценки долговечности наиболее полно представлены в работах А.В.Докукина, В.Н.Гетопанова, Ю.Д.Красникова, Е.З. Позина, П.В.Семенчи, В.И.Солода, Г.И.Солода, А.Г.Фролова, В.Н. Хорина, В.А.Дейниченко, Г.С.Рахутина, В.В.Солодухина, З.Я.Хур-гина и др. .

    Так, в работах на основании обширных исследований режимов работы горных машин доказано, что действующие в трансмиссиях нагрузки носят стохастический характер, обусловленный свойствами процессов разрушения, погрузки и перемещения горной массы. Изучение и определение нагрузок в элементах горных машин базируется на вероятностных методах, в част -ности, на теории случайных функций. Следует отметить, что расчеты важнейших элементов горных машин (зубчатых и цепных передач валов, осей и др.) доведены до уровня отраслевых стандартов .

    Метод статистического (вероятностного) моделирования заключается в разработке и исследовании функционирования математической модели динамической системы

    Оценку долговечности машин можно производить в лабораторных условиях методом стендовых ресурсных испытаний, роль которых в современном машиностроении определяется ростом требований и надежности оборудования, вопросами стандартизации, растущей потребностью ускорения темпов проверки и реализации новых конструкций.

    Особую остроту решение этих вопросов приобретает применительно к очистному оборудованию. Высокая стоимость простоев лавы предъявляет повышенные требования к надежности трансмиссий режущих частей очистных комбайнов. Стендовые испытания дают возможность в сопоставимых условиях и с меньшими затратами определять уровень качества изделия, установленный соответствующими стандартами.

    Возможность определения ресурса при стендовых испытаниях в весьма короткие сроки позволяет значительно уменьшить расходы, связанные с отказами изделий при эксплуатационной проверке.

    Ускорение испытаний осуществляется за счет исключения технологических пауз, неизбежных в эксплуатации, т.е. за счет непрерывности испытательного процесса, а также за счет интенсификации различными способами процессов утраты ресурса изделиями.

    Несмотря на то, что финальной проверкой всех свойств изделия является эксплуатация, на основании которой выносится окончательное суждение о его долговечности, стендовые ускоренные ресурсные испытания являются в настоящее время одним из наиболее перспективных средств оперативного контроля уровня долговечности; они применяются как для ускорения отработки опытных конструкций, обеспечивая им заданную долговечность на стадии освоения, так и для контроля качества серийной продукции в процессе изготовления, ремонта и после модернизации конструкции или внедрения более совершенных технологических процессов ее производства.

    Анализ различных методов оценки долговечности машин позволяет сделать выводы:

    I.Аналитический метод и метод статистического моделирования заключаются в совместном анализе действующих нагрузок и прочностных характеристик деталей, и дают косвенную оценку долговечности машин через коэффициенты запасов прочности их деталей и должны проверяться исследованиями работы машин в эксплуатационных или близких к ним условиях.

    2.Статистически достоверная информация о долговечности машин может быть получена только по результатам промышленной эксплуатации изделий, однако большая длительность процесса снижает ценность этой информации,

    3.Стендовые ускоренные ресурсные испытания позволяют получать информацию о долговечности машин в значительно более короткие сроки, чем по результатам эксплуатационных испытаний или наблюдений за эксплуатацией изделий.

    1,2. Опыт проведения стендовых ускоренных ресурсных испытаний зубчатых трансмиссий в других отраслях машиностроения

    Ускоренными испытаниями называются испытания продукции, методы и условия проведения которых обеспечивают получение необходимого объема информации в более короткий срок, чем в предусмотренных условиях и режимах эксплуатации .

    Разработка общих положений, принципов и рекомендаций по методикам ускоренных испытаний в машиностроении нашла свое отражение в трудах Р.В.Кугеля, С.С.Дмитриченко, Г.И.Скундина, И.Н.Величнина, О.Ф.Трофимова, В.В.Гольда, А.Д.Левитануса, Х.И.Хазанова. Е.Гасснера, и других авторов

    В процессе доводки ресурсным испытаниям подвергаются отдельные детали, сборочные единицы, а также машины в сборе.

    Режимы и методы испытаний выбираются таким образом, чтобы были обеспечены минимальные продолжительность и стоимость испытаний. Наиболее распространенными способами ускорения испытаний являются: уплотнение рабочих циклов; учащение рабочих циклов; экстраполяция по времени; усечение спектра нагрузок; форсирование по нагрузке.

    Уплотнение рабочих циклов осуществляется за счет исключения неизбежных в эксплуатации технологических пауз при непрерывном ведении испытаний и позволяет достигать высоких значений коэффициента ускорения по календарному времени Ку.

    Принцип учащения рабочих циклов основан на увеличении скорости приложения действующих нагрузок и предполагает независимость (в определенных пределах) долговечности изделия от частоты приложения нагрузки. Коэффициент ускорения при этом пропорционален отношению частот приложения нагрузок при ускоренных и нормальных испытаниях fy и fn "

    Экстраполяция по времени позволяет ускоренно оценивать долговечность по начальным результатам испытаний изделий,для которых достаточно хорошо изучены закономерности процессов исчерпания ресурса.

    Усечение спектра нагрузок заключается в воспроизведении при испытаниях части эксплуатационных нагрузок, оказывающих наиболее повреждающее воздействие.

    В тех случаях, когда запасы прочности деталей объектов испытаний достаточно велики, для ускорения испытания проводятся при увеличенных (форсированных) по сравнению с максимальными эксплуатационными,нагрузках.

    В основе выбора того или иного способа лежит необходимость обеспечения тождественности видов и характера повреждений на стенде и в эксплуатации. Это достигается учетом сложности и многообразия, процессов разрушения деталей, каждый из которых имеет свою критическую область. При переходе этой области происходят его качественные изменения . Режимы испытаний выбираются так, чтобы эта критическая область не была достигнута и, следовательно, осталась неизменной качественная сторона процесса разрушения.

    Различные изделия машиностроения как правило состоят в своей основе из нескольких групп наиболее широко применяемых элементов, выполняющих одинаковые функции, таких как валы, подшипники, зубчатые передачи, уплотнения и т.д. Несмотря на многообразие конструктивных решений, применяемых материалов и условий эксплуатации машин различного назначения в методическом подходе к ресурсным испытаниям этих элементов много общего.

    Зубчатые передачи являются наиболее ответственными элементами конструкций ряда машин, определяющими их технические показатели и в первую очередь ресурс. Организацией и проведением стендовых ресурсных ускоренных испытаний зубчатых передач занимается ряд научно-исследовательских организаций и машиностроительных заводов: ЩИИТмаш, ШИИетройдормаш, НАТИ, ЗИЛ, ХТЗ и др., а в последние годы для горных машин -Гипроуглемаш и ИГД им.А.А.Скочинского /г

    Большой опыт проведения стендовых ресурсных ускоренных испытаний трансмиссий накоплен в автомобильной промышленности. Чаще всего при испытаниях агрегатов на долговечность применяется постоянный либо по скорости, либо по нагрузке режим. Нагрузка выбирается по возможности близкой к максимально возможной, равной например, максимальному крутящему моменту двигателя. Коробку передач испытывают таким образом на всех ступенях передач, регистрируя число циклов до разрушения. При испытаниях по такой методике, в силу различия между испытательным режимом и эксплуатационным, нет строгого соответствия между долговечностью агрегата в стендовых условиях и в эксплуатации.

    Пересчет долговечности в этом случае осуществляется путем сопоставления результатов испытаний с данными эксплуатации тех же моделей. Кроме того, при таком методе действи -тельная долговечность шестерен не выявляется, так как их долговечность в эксплуатации зависит от чередования нагрузочных режимов.

    Несоответствие нагрузок модет влиять также на характер повреждений вследствие изменения деформаций конструкции.Иными словами, методика испытаний на долговечность должна учитывать весь диапазон эксплуатационных нагрузок. Это достигается программированием режимов испытаний. Реальные процессы нагружения элементов автомобильных трансмиссий весьма сложны и представляют собой в большинстве случаев нестационарные случайные процессы, воспроизведение которых в стендовых условиях весьма сложно. Кроме того, такие испытания, лишь воспроизводящие реальные нагрузки, не дают существенного сокращения продолжительности испытаний. Поэтому в практике ис- питаний идут по пути создания условного схематизированного процесса, эквивалентного по повреждающему воздействию реальному. Случайный характер чередования в эксплуатации нагрузок различной величины с достаточной точностью может быть заменен эквивалентным по повреждающему воздействию воспроизведением циклов напряжений, входящих в состав случайного процесса.

    В основе программирования лежит гипотеза суммирования повреждений ["99] , записываемая в общем виде: ^- Mi ~ а > где Ґіі -число циклов действия напряжений данного уровня; /|/2 -число циклов до разрушения при напряжениях этого уровня; CL -величина, характеризующая сопротивляемость детали действующим нагрузкам в зависимости от ее материала, размеров, а также условий нагружения. При программных испытаниях может быть получена уточненная оценка интенсивности накопления усталостных повреждений для конкретного спектра нагрузок, присущего данной конструкции, а также объективно учтено влияние как высоких уровней нагружения, так и напряжений ниже предела выносливости.

    Составление программ испытаний производится на основании результатов статистической обработки записей нагрузок в эксплуатации.

    При последовательном воспроизведении нагрузочных блоков трансмиссию доводят до разрушения. Эксплуатационная долговечность определяется по формуле: где ^ -количество нагрузочных блоков; \ -временной эквивалент одного программного блока.

    Проведением ускоренных ресурсных испытаний тракторных коробок передач, бортовых передач, ведущих мостов занимаются НАГИ, ХТЗ и другие организации отрасли.

    Применяемые методы и режимы испытаний зависят от условий работы и видов повреждений зубчатых колес в эксплуатации. Ускорение испытаний достигается путем форсирования режимов нагру-жения.

    Нагружение испытуемых колес осуществляется в тех же корпусах, что и в эксплуатации. При этом достигается воспроизведение основных эксплуатационных условий работы (смазочный и температурный режимы, влияние жесткости корпусов и валов и т.д.). Для испытания новых узлов, для которых не накоплен опыт эксплуатации, нагружающий момент задается обычно равным 1,3 от расчетного.

    На ХТЗ выполнены исследования по определению предельно-допустимого нагрузочного режима при ускоренных испытаниях зубчатых передач. В качестве ограничительного критерия была принята температура масла в зоне контакта зубьев. На основании исследований была предложена зависимость, позволяющая определить величину максимально допустимого по заеданию нагружающего момента в зависимости от геометрии зацепления и скоростей скольжения.

    На ХТЗ проводят также испытания зубчатых колес на контактную выносливость по методике, разработанной НАТИ. Испытаниям подвергаются три комплекта колес, которые перед обкаткой проходят контроль на соответствие требованиям чертежей. Обкатка испытуемых колес производится при следующих режимах нагружения: без нагрузки - 7 часов; с нагрузкой - 25$ - 7 часов; г* с нагрузкой 50$ - 7 часов.

    За 100$ нагрузки принимается заданный методикой испытаний максимальный момент г/ц. Испытания проводят в течение 500 часов при постоянной нагрузке, при этом для увеличения удельной контактной нагрузки колеса смещены вдоль оси на половину ширины зуба. Температура масла во время испытаний с помощью охлаждающего устройства поддерживается в пределах 70-80С.

    При определении изгибной выносливости зубьев испытуемые колеса устанавливаются в своих корпусах, а нагружающий момент составляет 1,3 от наибольшего момента в эксплуатации.

    Продолжительность испытаний определяется по формуле: / -ШІ L 60пе? где /?

    В случае поломки какого либо вала или шестерни они заменяются новыми и испытания продолжаются. Обычно испытывают параллельно 2-3 коробки передач одного типоразмера в течение 1500 ч. Если за это время не происходит поломок, их долговечность гарантируется в пределах 6000 ч.

    Таким образом, ресурсные испытания трансмиссий в автотракторной промышленности являются, как правило, сравнительными.

    Институт ВНИИСТРОДЦОРМАШ проводит ускоренные ресурсные испытания трансмиссий бульдозеров, скреперов и других машин . При ресурсных испытаниях отработанных конструкций, при наличии накопленного материала по результатам испытаний аналогичных конструкций или установленной на основании многочисленных наблюдений связи между результатами испытаний и данными эксплуатации, применяется режим испытаний с постоянной нагрузкой.

    Для определения показателей долговечности новых или модер низированных конструкций, оценки эффективности мероприятий по увеличению долговечности выпускаемой продукции, при выборе оп- ^ тимального конструктивного варианта трансмиссии, испытания про- \ > водят при программированном режиме. \

    Проведению испытаний предшествует: проведение инструментальных замеров нагрузок при типичных условиях эксплуатации; выбор на основании данных эксплуатации типичных условий нагружения; разработка.режима ускоренных испытаний.

    В зарубежном автостроении стендовые ускоренные испытания занимают прочное место в технологической цепочке создания новых машин.

    Так, фирма И//2: (ГДР) проводит комплексные испытания узлов автомобильных трансмиссий. Программа испытаний составляется на основе статистической обработки результатов дорожных испытаний. Для ускорения испытаний применяется метод увеличения нагрузок эксплуатационного спектра при сохранении распределения частот отдельных нагрузок. іирма "Детройт Дизел Аллисон" (США) перед постановкой на производство любой новой трансмиссии проводит в большом объе-еме ее стендовые испытания. Нормирование испытательного цикла осуществляется с помощью вычислительной машины, в которую вводятся прочностные параметры деталей и факторы их эксплуатационной нагруженности.

    Критерии долговечности отдельных зубчатых передач в зависимости от материалов, видов и режимов термообработки, условий смазки, способов коррекции и пр. постоянно являются предметом исследований на специальных стендах в СССР и за рубежом.

    В горном машиностроении большой вклад в решение этих вопросов внесли Я.Й.Альшиц, А.И.Петрусевич, П.В.Семенча, Г.И.Солод, Л.А.Молдавский, В.П.Онищенко, Ю.А.Зислин, В.В.Солодухин, М.Б. Блитштейн, В.А.Дейниченко

    В ИГД им.А.А.Скочинского накоплен большой опыт проведения усталостных испытаний на прочность и изгибную выносливость зубьев зубчатых колес на гидропульсаторах. Результаты этих исследований изложены в работах П.В.Семенчи и Ю.А.Зислина. На основании проведенных исследований разработан комплекс предложений по повышению прочности, долговечности и совершенствованию методов расчетов зубчатых передач.

    Следует отметить, что ресурсные испытания отдельных деталей трансмиссий при всей их важности не могут дать комплексной оценки долговечности редуктора в целом с учетом взаимного влияния деталей друг на друга вследствие различных причин: деформаций валов и корпусных деталей, неточностей изготовления и пр.

    Из представленного обзора следует, что ресурсные испытания трансмиссий различных машин проводятся рядом организаций и фирм с целью прогнозирования их долговечности. Ресурсные испытания развиваются в направлении сокращения сроков испытаний, в чем достигнуты значительные успехи. Так коэффициент ускорения по календарному времени . При испытаниях трансмиссий с разветвленными кинематическими схемами (имеющих несколько выходных валов) иногда применяется комбинация упомянутых способов, при которой одни валы нагружаются замкнутым, другие - разомкнутым способами.

    На стендах с замкнутым потоком нагружение испытуемых объектов осуществляется за счет внутренних сил сопротивления замкнутого силового контура с циркуляцией мощности. Преимуществом этих стендов является их высокая экономичность, т.к. мощность приводного двигателя определяется только потерями (механическими, электрическими и т.д. в зависимости от способа замыкания) в контуре. Однако наличие дополнительных устройств для замыкания усложняет конструкцию стенда и в известной степени снижает его надежность.

    В стендах с разомкнутым потоком нагружение осуществляется с помощью различных тормозных устройств, превращающих в тепло передаваемую им энергию. Разомкнутые стенды не экономичны, но более универсальны и поэтому получили большое распространение.

    Конструированием и изготовлением испытательных стендов занимаются различные машиностроительные предприятия, а также проектные и научно-исследовательские организации.

    Как было показано в разделе 1.2, стендовые ускоренные ресурсные испытания зубчатых трансмиссий получили широкое распространение в автотракторной промышленности, все больше заменяя при решении ряда технических вопросов дорожные и полигонные испытания.

    На рис.1.1 схематично представлен разработанный на ЗИЛе стенд для испытаний коробок передач замкнутым способом22 J

    Замкнутый контур образован с помощью замыкающих редукторов 2 и коробки передач 4, аналогичной испытуемой 3. Привод системы осуществляется от электродвигателя б, нагружение - с помощью планетарного нагружателя I. Величина нагрузки в замкнутом контуре контролируется с помощью датчика крутящего момента 5,

    Кинематическая схема стенда Минского автозавода для испытаний ведущих мостов автомобиля представлена на рис.1.2 ; очистные комбайны в ходе их производства подвергаются приемо-сдаточным, типовым и периодическим испытаниям на стендах предприятия-изготовителя. Аналогичным испытаниям должны подвергаться комбайны после капитального ремонта на рудоремонтных заводах. Ниже подробно рассмотрены испытания в той или иной степени связанные с проверкой долговечности трансмиссий режущих частей очистных комбайнов.

    Стендовые испытания трансмиссий комбайнов проводятся в проектно-конструкторских и научно-исследовательских институтах, а также на машиностроительных предприятиях отрасли. Нагружение испытуемых трансмиссий на стендах производится либо с помощью среды, имитирующей эксплуатационный характер нагружения, либо с помощью специальных устройств. В качестве такой среды при испытаниях гомбайнов применяется углецементный блок. Испытания на углецементном блоке являются (функциональными и ввиду малой продолжительности резания блока, вследствие ограниченности его размеров, обусловленной высокой стоимостью изготовления, не позволяют судить о ресурсе трансмиссий.

    Приемо-сдаточные и периодические испытания трансмиссий режущих частей очистных комбайнов проводятся в соответствии с ОСТ 24.070.26-73 . Нагружение испытуемых объектов на этих стендах осуществляется посредством электропорошковых тормозов ТЭП 4500, имеющих независимый от оборотов тормозной момент и не требующих поэтому наличия повышающих редукторов. Соединение выходных валов испытуемых объектов с тормозом производится с помощью карданных валов, упрощающих центровку.

    ЛГИ им.Г.В.Плеханова разработал и внедрил на заводе "Красный Октябрь" стенд для испытания после ремонта комбайнов Ш-ІКГ, 2К-52, Ш0І На стенде с помощью нагрузочных машин постоянного тока, подсоединенных к выходным валам испытуемых объектов с помощью мультипликаторов, можно создавать переменные нагрузки и по механическим потерям в трансмиссии проверять качество ремонта приводов исполнительного органа.

    Стенд ЛГИ является по своему назначению обкаточным стендом, о чем свидетельствуют проведенные на нем работы для исследования нагруженности зубчатых колес очистных комбайнов, при нагружении только статическим моментом.

    В 1969 г. в Гипроуглемаше под руководством автора был разработан стенд CTI7, на котором были проведены ускоренные ресурсные испытания трансмиссии режущей части комбайна "Ш-Старт" к. В этом документе были представлены режимы испытаний, выбор их параметров, даны рекомендации по выбору количества объектов испытаний, организации и порядку их проведения. Составление нагрузочного блока производилось известным методом по накопленной (интегральной) кривой, построенной в соответствии х Научные руководители и исполнители работы -Ю.Д.Краеников. П.В.Семенча, Е7Е.Гольдбухт, Ю.А.Зислин, Э.В.Нулешова, Г.Е. Шевченко, Б.П.Грязнов, А.Н.Вигилев. с нормальным законом распределения действующих нагрузок. Определение параметров режима нагружения предлагалось выполнять в соответствии с математическим ожиданием, дисперсией и корреляционной функцией или спектральной плотностью нагрузок. Однако, как было показано в предыдущем разделе и подтверждено экспериментально в настоящей работе, при испытаниях зубчатых трансмиссий нет необходимости воспроизводить частотный нагрузочный спектр. Основные положения методики не подкреплены опытом, что придает ей несколько умозрительный характер. К числу ее недостатков следу- \ ет отнести также отсутствие конкретных инженерных рекомендаций і по расчету параметров режима нагружения, по выбору количества ] объектов испытаний, по определению продолжительности испытаний, а также по оценке ресурса испытуемого изделия по результатам испытаний.

    Для сравнения следует отметить, что в институте Главного угольного управления Великобритании (л/се) имеется уже более чем 15-летний опыт проведения стендовых ускоренных ресурсных испытаний различных редукторов горных машин, включая трансмиссии режущих частей очистных комбайнов fl25J . Опытные комбайны, в том числе выпускаемые частными фирмами, проходят всесторонние исследования на стендах, полигонах, а также на опытных участках в шахте. Для оценки долговечности,в соответствии с принятой методикой,испытания производятся при нагружении выходного вала испытуемой трансмиссии крутящим моментом, соответствующим номинальной мощности приводного двигателя, и радиальной силой, равной половине усилия подачи. Установлено, что редуктору, отработавшему без поломок 1000 ч. гарантирован ресурс в эксплуатации, равный 4000 ч. Такая оценка результатов ресурсных испытаний возможна только при условии стабильности и высокого качества изготовления трансмиссий, а также большого опыта проведения испытаний.

    Зарубежные комбайны, закупаемые А/СВ для эксплуатации в угольных бассейнах Великобритании, также проходят стендовые ресурсные испытания в MRDE по приведенной выше методике.

    Изложенное позволяет сделать вывод о том, что принятые в производстве испытания трансмиссий режущих частей очистных комбайнов необходимо усовершенствовать как в методическом плане, так и в части создания средствдля проведения ресурсных испытаний»

    1,5. Задачи исследования

    Приведенный выше анализ методов и средств для испытания различных трансмиссий позволяет сделать следующие выводы: получение данных о долговечности трансмиссий режущих частей очистных комбайнов, базирующееся до настоящего времени на результатах эксплуатационных наблюдений, является весьма длительным процессом, а отсутствие оперативной оценки долговечности приводит к постановке на производство машин с непроверенным ресурсом и затрудняет проведение работ по усовершенствованию конструкций и технологического процесса их производства и ремонта; в СССР и за рубежом во многих отраслях машиностроения получили широкое распространение стендовые ускоренные ресурсные испытания, позволяющие определять ресурс как опытных, так и серийных машин в приемлемые для практики сроки, что в значительной степени определяет их высокий качественный уровень.

    Для реализации в отрасли стендовых ускоренных ресурсных испытаний трансмиссий режущих частей очистных комбайнов и в соответствии с целью настоящей работы сформулированы задачи исследования: разработать метод расчета режима нагружения; создать технические средства для проведения ресурсных ускоренных испытаний; установить критерий предельного состояния объектов испытаний и метод оценки степени повреждения зубьев; установить коэффициент перехода для оценки эксплуатационного ресурса по результатам стендовых испытаний; по результатам испытаний разработать рекомендации по повышению долговечности основных элементов трансмиссий.

    1.6. Методология исследований

    Для решения поставленных задач разработана методология, предусматривающая: обобщение отечественного и зарубежного опыта по исследуемому вопросу в различных отраслях машиностроения; аналитические исследования (методика расчета режимов нагружения, описание результатов испытаний и т.д.); разработку конструкции универсального нагрузочного стенда; экспериментальные исследования (проведение ресурсных испытаний) ; разработку предложений и рекомендаций по повышению долговечности и совершенствованию трансмиссий режущих частей очистных комбайнов, а также по дальнейшему совершенствованию конструкции стенда.

    Работа проводилась в Гипроуглемаше и ИГД им. А.А. Скочинско-го в соответствии с Головной темой 01172 отраслевого плана НИР Минуглепрома СССР, а также в рамках соглашения между Минуглепро-мом СССР и Главным угольным управлением Великобритании по теме "Повышение надежности горношахтного оборудования",

    В качестве объекта испытаний была выбрана режущая часть серийного комбайна IKI0I, являющейся одной из широко распро- страненных серийных моделей, по которой накоплен большой опыт эксплуатации и различных лабораторных исследований.

    Схема методологии исследований представлена на рис.1.4. На основании аналитических исследований условий эксплуатации очистных комбайнов и особенностей конструкций их режущих частей производятся разработки методики проведения стендовых ускоренных ресурсных испытаний и средств для их проведения.

    Обработка и анализ результатов проведенных стендовых испытаний режущих частей, количественное и качественное сопоставление видов повреждений деталей трансмиссий на стенде и в эксплуатации дадут возможность: проверить правильность основных положений методики; установить пригодность стендового оборудования и наметить пути его модернизации; определить коэффициент перехода для прогноза эксплуатационного ресурса и дать рекомендации по повышению долговечности испытанных трансмиссий.

    Анализ услобий эксплуатации йнапиз конструкта ций комдайноб

    Разработка конструкиии стенда

    Пробедение ускоренных испытаний

    Определение коэффц ииента перехода dm расчета эксплуатационного ресурса

    Формиробоние режима ускоренных испытаний

    Качественное и mum тбеннре сопоставление оищ повреждений на стенде и б эксплуатации

    Обработка и анализ резупьтатоб испытаний

    Разработка t предложений по повышению долговечности трансмиссий

    Модернизация конструкции стенда І

    Рис.1.4. Схема методологии исследований

    Опыт проведения стендовых ресурсных ускоренных испытаний зубчатых трансмиссий в других отраслях машиностроения

    Главным условием, которое должно выполняться при организации и проведении ускоренных испытаний на ресурс, является воспроизведение на стенде видов и характера повреждений аналогичных эксплуатационным. Наиболее просто это достигается воспроизведением на стенде спектра эксплуатационных нагрузок. Как было показано в разделе 1,2, ввиду технических сложностей на практике пользуются упрощенными способами нагружения. Между режимами стендовых испытаний и эксплуатационными, существует определенная связь, обусловленная необходимостью сравнения количественной и качественной сторон процессов разрушения,

    Формирование нагрузок в трансмиссии режущей части очистного комбайна происходит на исполнительном органе машины и определяется сопротивляемостью резанию угля, конструктивными особенностями машины и кинематикой ее перемещения по лаве.

    Институтом горного дела им.А.А.Скочинского на основании проведенных исследований разработана экспериментально-статистическая теория резания угля и горных пород. Основные положения этой теории изложены в трудах А.И.Берона, Л.И.Барона, Л.Б. Глатмана, Е.З.Позина .

    Случайный характер изменения механических свойств угля, наличие твердых включений и трещин, динамическая структура привода комбайна, неравномерность перемещения комбайна вдоль забоя обуславливают неравномерность нагрузки на исполнительном органе.

    Разброс нагрузки вокруг средней (спектр нагруженности) происходит с переменными частотой и амплитудами, которые могут достигать многократных значений от средней величины нагрузки.

    Имитация эксплуатационной нагруженности комбайнов в условиях стенда весьма затруднительна. В целях упрощения, пространственная система сил на исполнительном органе может быть заменена осевой и радиальной силами и крутящим моментом, приложенными к выходному валу. Эквивалентная система нагружения выходного вала испытуемой трансмиссии обеспечивает напряженное состояние, а следовательно и деформации деталей аналогичное тому, которое имеет место в эксплуатации.

    Основной задачей программирования ресурсных испытаний яв -ляется воспроизведение нагрузочного режима, эквивалентного по повреждающему воздействию спектру эксплуатационных нагрузок, определяемому величиной (амплитудой) действующих нагрузок, их чередованием и длительностью действия.

    Проведенными исследованиями установлено, что замена спектра эксплуатационных нагрузок некоторым упорядоченным (нагрузочным блоком) должна производиться с таким расчетом, что бы каждый уровень нагрузок во время испытаний воспроизводился не менее 10-20 раз. Количество ступеней в блоке должно быть не менее 6-8.

    Параметры нагрузочного блока - величины нагрузок и продолжительность их действия - определяют параметры приводного электродвигателя и статистические характеристики нагрузок на валу исполнительного органа.

    Основными исходными данными для расчета параметров блока являются устойчивые моменты на валах приводного электродвигателя и исполнительного органа Муст и Ми уст, соответствующие эксплуатационному режиму работы и связанные соотношением:

    Расчет режимов нагружения при стендовых ресурсных испытаниях

    В настоящее время ресурс очистных комбайнов определяется ресурсом их режущих частей, в свою очередь лимитируемым в основном долговечностью зубчатых передач. Более 7($ всех средств, затрачиваемых на приобретение запчастей при капремонтах очистных комбайнов, расходуется на детали трансмиссий, в первую очередь - на зубчатые колеса и валы-шестерни.

    Долговечность зубчатых передач, как правило, определяется прежде всего повреждениями их зубьев. Класси(йкация видов повреждений зубьев зубчатых передач в общем и угольном машиностроении приведена в ряде работ , а также с результатами специально организованных наблюдений за эксплуатацией десяти комбайнов

    Ускоренными называются испытания, методы и условия проведения которых обеспечивают получение необходимого объема информации в более короткий срок, чем в предусмотренных условиях и режимах эксплуатации. Ускоренные испытания бывают сокращенными и форсированными.

    Сокращенные испытания - ускоренные испытания без интенсификации процессов, вызывающих отказы или повреждения. В сокращенных испытаниях уменьшение сроков получения показателей надежности достигается за счет прогнозирования поведения объекта испытаний на период, больший, чем продолжительность испытаний.

    Форсированные испытания - ускоренные испытания, основанные на интенсификации процессов, вызывающих отказы или повреждения. При форсированных испытаниях проводится преднамеренное увеличение скорости утраты работоспособности изделия.

    Ускоренные испытания разрабатываются с целью сокращения сроков проведения испытания по сравнению с нормальными испытаниями, т.е. испытаниями, методы и условия проведения которых обеспечивают получение необходимого объема информации в такой же срок, как и в предусмотренных НТД условиях и режимах эксплуатации для данного изделия /23/.

    Основной характеристикой ускоренных испытаний является коэффициент ускорения - число, показывающее, во сколько раз продолжительность ускоренных испытаний меньше продолжительности испытаний, проведенных в предусмотренных условиях и режимах эксплуатации (нормальных испытаний).

    Коэффициент ускорения может исчисляться по наработке и по календарному времени. Коэффициент ускорения по наработке - отношение наработки изделия в нормальных испытаниях к наработке в ускоренных испытаниях. Коэффициент ускорения по к а лендарному времени - отношение календарного времени нормальных испытаний к календарному времени ускоренных испытаний.

    При разработке ускоренных испытаний для конкретного вида изделий необходимо в первую очередь установить принцип ускоренных испытаний, затем на основании сформулированного принципа выбрать метод и режим ускоренных испытаний /22/. Принцип ускоренных испытаний - совокупность теоретических и экспериментально обоснованных закономерностей или допущений, на использовании которых основано проведение испытаний с сокращением их продолжительности. Метод ускоренных испытаний - совокупность правил применения принципов ускоренных испытаний для получения показателей надежности определенных групп или видов изделий. Режим ускоренных испытаний - режим, предусмотренный применяемым принципом и методом ускоренных испытаний и обеспечивающий сокращение продолжительности испытаний.

    Режим ускоренных испытаний может быть нормальным (для сокращенных испытаний), форсированным (для форсированных испытаний), комбинированным при чередовании нормального и форсированного режимов (при форсированных испытаниях).

    Нормальный режим - режим, при котором значения его параметров находятся в пределах, установленных в технической документации для нормальной эксплуатации испытуемого изделия. Частным случаем нормального режима является номинальный режим испытания, соответствующий установленным параметрам внешних воздействий, принимаемых обычно за начало отсчета допустимых отклонений.

    Форсированный режим - режим испытаний, обеспечивающий увеличение интенсивности процессов утраты работоспособности по сравнению с нормальным режимом. Форсированный режим может достигаться за счет изменения одного или одновременно нескольких форсирующих факторов.

    Форсирующим фактором называется составляющая режима испытаний, изменение параметров которой по сравнению с режимом нормальных испытаний приводит к интенсификации процессов, вызывающих отказ или повреждение. В качестве форсирующего фактора используют усилие (момент), скорость (частоту), температуру, влажность среды, абразивность среды, химическую агрессивность среды и т.д.

    Показатели надежности, полученные по результатам ускоренных испытаний, можно пересчитать для нормального режима при условии, что физические процессы разрушения при форсированных и ускоренных испытаниях одинаковы. Поэтому режимы ускоренных испытаний и форсирующий фактор могут изменяться при ускорении процесса испытаний только до определенного предела, называемого предельной нагрузкой . Такой нагрузкой является предельно допустимый уровень форсирующего фактора, обеспечивающий максимально возможную степень форсирования испытаний при сохранении идентичности картины разрушения в условиях ускоренных и нормальных испытаний и выполнении предпосылок, положенных в основу выбранного принципа ускоренных испытаний.

    Результаты нормальных и ускоренных испытаний будут сопоставимы, если при соблюдении идентичности природы разрушения получаемые значения показателей надежности будут одинаковы, т.е.

    где R(t н), R(t y) - показатели надежности при нормальном и ускоренном режимах соответственно.

    При экспоненциальном распределении для вероятности безотказной работы условие (7.26) запишется в виде

    , (7.27)

    где  н,  у - интенсивность отказов в нормальном и ускоренном режимах испытаний соответственно.

    Если коэффициент ускорения по наработке
    , то из (7.27) получаем, что интенсивность отказов в нормальном режиме должна составлять

    . (7.28)

    Для распределения Вейбулла с плотностью
    условие равной вероятности безотказной работы при нормальном и ускоренном режимах испытаний (7.26) принимаетвид

    . (7.29)

    Отметим, что в этих выражениях параметр масштаба  (или Т 1 =1/ , см. разд.4.5, формулы (4.33)-(4.35)) не является интенсивностью отказов; интенсивность отказов при распределении Вейбулла является функцией времени (наработки) и описывается формулой (4.35).

    Из условия (7.29) следует, что параметр масштаба в нормальном режиме должен составлять

    . (7.30)

    Если ускоренные испытания проводятся с целью определения средней наработки, которая для распределения Вейбулла

    , (7.31)

    то из условия
    будем иметь

    (использовано одно из свойств гамма-функции: Г(x+1)=xГ(x)).

    Отсюда параметр масштаба в нормальном режиме при испытаниях с целью определения средней наработки до отказа (среднего ресурса) в случае распределения Вейбулла должен составлять

    . (7.33)

    К основным принципам ускоренных испытаний относятся /22/:

    Уплотнение рабочих циклов;

    Экстраполяция по времени;

    Усечение спектра нагрузок;

    Учащение рабочих циклов;

    Принцип сравнения;

    Экстраполяция по нагрузке;

    Принцип «доламывания»;

    Принцип «запросов».

    Уплотнение рабочих циклов применяется при испытании изделий, которые в эксплуатации имеют большие перерывы в работе. На сокращении этих перерывов основано ускорение испытаний. Примером использования принципа уплотнения рабочих циклов могут служить испытания машин с сезонной загрузкой. В этом случае, сокращая или совсем ликвидируя известные перерывы в эксплуатации, связанные с ночным временем, нерабочими климатическими периодами и т.п., можно добиться значительного коэффициента ускорения по календарному времени.

    Экстраполяция по времени основана на гипотезе о возможности достаточно достоверной оценки закономерностей процесса накопления повреждений по начальным этапам процесса. При этом испытания в нормальном режиме проводятся лишь на некотором начальном участке работы изделия, включающем выход в стационарный режим повреждения, измеряется параметр, определяющий накопленное повреждение, а затем эти результаты экстраполируются до перехода в неработоспособное (предельное) состояние. Экстраполяция проводится графически или аналитически.

    Практически при всяком детерминированном изменении накопленного повреждения  (например, величины износа) во времени t путем соответствующего преобразования координат стационарный процесс его накопления можно отобразить в линеаризованном виде.

    Выравнивание методом наименьших квадратов в этом случае сводится к отысканию коэффициентов а и b уравнения линейной регрессии

    . (7.34)

    Значение этих коэффициентов определяется на основе результатов испытаний по значениям повреждения  i (величины накопленного износа), соответствующим определенным моментам времени t i .

    При этом искомые коэффициенты уравнения (7.34) могут быть определены по формулам:

    ;

    , (7.35)

    где m - число парных значений t i и  i .

    Для каждого момента времени t i вычисляется статистическая оценка дисперсии
    по формуле

    . (7.36)

    где m i - число экспериментальных точек, полученных в момент времени t i , (число реализации процесса); j - порядковый номер экспериментальных точек, полученных в момент времени t i (1 < j ≤ m i);
    - оценка математического ожидания (среднее арифметическое) процесса(t), определяемая по всем реализациям процесса, наблюдаемым в момент t i , т.е.

    .

    Для стационарного процесса повреждения (изнашивания) результаты испытаний по дисперсии выравниваются квадратической зависимостью вида

    .

    Если величина a 2 t 2 в пределах изучаемого интервала времени оказывается незначительной по сравнению с a 1 t, то последним слагаемым можно пренебречь. Если a 1 t << a 2 t 2 , то считают, что процесс характеризуется доминирующим влиянием начального качества образцов. Экстраполяция для такого процесса может быть осуществлена на основе испытаний как минимум нескольких образцов.

    Для эргодического процесса оценка ресурса может быть получена испытаниями даже одного образца, но достаточно большой продолжительности.

    Практически можно считать, что экстраполяция по времени дает удовлетворительную оценку долговечности при продолжительности испытаний не менее 40…70% ресурса изделия. Этот принцип может применяться для изделий, процессы исчерпания ресурса которых достаточно хорошо изучены. Вообще, проблема экстраполяции по времени требует решения в каждом конкретном случае трех основных задач /22/:

    1) выбора уравнения состояния, достаточно надежно описывающего экспериментальные результаты в области изменения параметров испытаний;

    2) исследования поведения выбранного уравнения вне области эксперимента, что сводится к определению оценки точности прогнозирования;

    3) выбора объема экспериментальных данных, обеспечивающих надежный прогноз на заданный срок службы.

    Так, в результате многочисленных исследований, проведенных в нашей стране и за рубежом, для прогнозирования длительной прочности конструкционного металла на сроки службы более 100 тыс. час. рекомендована температурно-временная зависимость типа

    ,

    где a, n, b, c - параметры-константы, отражающие индивидуальные особенности материала; Т - абсолютная температура;  - напряжение.

    Усечение спектра нагрузок заключается в отбрасывании определенной части нагрузок, не оказывающих заметного повреждающего воздействия на объект испытаний. Большинство реальных машин и их элементов подвержены в условиях эксплуатации воздействию определенного спектра случайных или периодически повторяющихся нагрузок. Точное воспроизведение этого спектра нагрузок представляет значительные технические трудности, поэтому в большинстве случаев проводят статистический анализ повторяемости нагрузок различных уровней в эксплуатационном спектре нагружения объекта и составляют программный блок нагрузок, имитирующий с той же степенью приближения спектр эксплуатационных нагрузок.

    При испытаниях изделия многократно воспроизводят программный блок нагрузок, а ресурс, полученный в результате программных испытаний, считают оценкой ресурса изделия в эксплуатационных условиях. Недостаток такого подхода - большая длительность испытаний для изделий высокой надежности. С целью сокращения длительности программных испытаний в определенных случаях может быть использован принцип усечения спектра нагрузок.

    Частным случаем усечения спектра нагрузок является использование из всего рабочего цикла, состоящего из пуска, установившегося движения и останова, только двух элементов - пуска и останова. Целесообразность применения этого принципа основана на свойствах некоторых механизмов сохранять высокую износостойкость при установившемся движении, которое характеризуется гидродинамическим трением. Во время пуска или останова наблюдается граничное или даже сухое трение, приводящее к значительному износу рабочих поверхностей.

    Исходя из предположения, что установившееся движение не приводит к существенному износу, в испытаниях воспроизводят режим пусков и остановов. Ресурс при этом пересчитывают по следующей формуле, пренебрегая временем пусков и остановов:

    ,

    где N - число пусков-остановов; - средняя продолжительность интервала между пусками, определяемая по данным эксплуатации или расчетным методом с учетом функционального назначения испытываемого объекта.

    Испытания по этому принципу дают несколько завышенную оценку ресурса, но в большинстве случаев вполне приемлемую для практического использования.

    Форсирование пусками-остановами применяется при ускоренных испытаниях коробок передач, муфт сцепления, электродвигателей и других механизмов и агрегатов, работающих в циклических режимах эксплуатации.

    Принцип учащения рабочих циклов основан на увеличении частоты циклического нагружения или скорости движения под нагрузкой испытуемого элемента изделия. Предполагается, что долговечность изделия, выраженная в количестве циклов до предельного состояния, не зависит от частоты приложения нагрузки. При этом коэффициент ускорения определяется заранее из выражения

    ,

    где f y , f н - частота приложения нагрузки соответственно при ускоренных и нормальных испытаниях.

    Принцип учащения рабочих циклов используется при стендовых испытаниях изделий и их элементов. Коэффициент ускорения ограничивается скоростными возможностями испытательного оборудования, а иногда и возникновением сопутствующих процессов (например, повышением температуры), искажающих прямой переход к нормальным условиям по частотам.

    Модификацией принципа учащения рабочих циклов является проведение испытаний подвижных сопряжений деталей машин на изнашивание при повышенных скоростях скольжения v.

    Выражая ресурс по износу в виде накопленного пути трения L и считая в первом приближении, что L y = L н (это условие может быть корректно применено к процессу изнашивания лишь в очень ограниченном диапазоне изменения скоростей скольжения), можно определить коэффициент ускорения: k y = V y /V н.

    Для практической реализации этого принципа необходимо сохранение параметров, определяющих физические условия трения, в тех же пределах, что и при нормальных испытаниях. Так, для поддержания заданного температурного режима необходимо в ускоренных испытаниях использовать охлаждение поверхностей трения. Кроме того, увеличение частоты вращения, например, для подшипников скольжения может замедлить процесс изнашивания благодаря переходу от граничного к гидродинамическому трению.

    Вообще, применение принципа учащения рабочих циклов требует экспериментального обоснования режимов ускоренных испытаний во избежание получения несопоставимых результатов.

    Принцип сравнения основан на проведении испытаний изделия в форсированном режиме и пересчете полученных результатов с помощью известных данных по эксплуатации аналогичных изделий.

    В зависимости от имеющейся информации оценка надежности изделий производится тремя способами:

    1) сравнением долговечности двух изделий по результатам только форсированных испытаний;

    2) сравнением долговечности изделий, испытываемых в форсированном режиме, с результатами испытаний в этом режиме изделия-аналога и данными его эксплуатации;

    3) пересчетом результатов испытаний изделий в форсированном режиме применительно к нормальному режиму по имеющейся зависимости ресурса от уровня нагрузки.

    Первый способ применяется в чисто сравнительных испытаниях двух изделий при выявлении более долговечного из них. При этом считается, что изделие, проработавшее больше в форсированном режиме, имеет больший ресурс и в нормальных условиях. Это правомерно при условии, что зависимости ресурса от уровня форсирующего фактора для сравниваемых изделий не пересекутся в интервале от номинального до форсированного уровней форсирующего фактора.

    Второй способ предполагает наличие информации о долговечности изделия-аналога в форсированном и нормальном режимах. Определяемый из этой информации коэффициент ускорения для аналога умножается на значение наработки до предельного состояния, полученной при испытании нового изделия в форсированном режиме. Такая оценка производится в предположении, что физические свойства, определяющие зависимость ресурса от уровня форсирующего фактора, у нового изделия и изделия-аналога близки. Этот способ наиболее приемлем для испытания новых изделий массового производства, по которым имеется обширная информация о надежности предыдущих модификаций.

    Третий способ основан на пересчете результатов форсированных испытаний посредством имеющейся зависимости ресурса изделия от нагрузки.

    Принцип «доламывания» является достаточно универсальным принципом ускорения испытаний, который применяется при ресурсных испытаниях элементов машин и конструкций на усталость, изнашивание и длительную прочность.

    Для пояснения этого принципа в применении к задачам ускоренной оценки ресурса изделия при некотором эксплуатационном режиме нагружения представим себе, что мы имеем несколько однотипных изделий с различными наработками при эксплуатационном режиме нагружения. В общем случае эти изделия в результате различной продолжительности эксплуатации получают различную степень повреждения в зависимости от той доли, которую составляет их эксплуатационная наработка от всего ресурса при том же эксплуатационном режиме нагружения. Однако, не зная ресурса изделия при эксплуатационном нагружении, невозможно оценить эту долю в предположении о линейном суммировании повреждений, когда доля вносимого в единицу времени повреждения постоянна и не зависит от начала отсчета по шкале времени.

    Принцип «доламывания» предполагает для оценки степени повреждения объекта испытаний за время эксплуатационной наработки подвергнуть объект испытаний воздействию форсированного режима нагружения и на этом режиме довести объект до предельного состояния («доломать» его).

    В результате «доламывания» объекта оценивается его остаточный ресурс на форсированном режиме. Путем сравнения полученного остаточного ресурса объекта с полным ресурсом нового (без предварительной эксплуатационной наработки) объекта того же типа на форсированном режиме нагружения оценивается степень повреждения (степень исчерпания ресурса) объекта за время его эксплуатационной наработки. Если полный ресурс объектов испытаний на форсированном режиме нагружения не известен, необходимо несколько новых объектов из той же партии испытать на этом режиме до предельного состояния и оценить таким образом средний ресурс объектов при форсированной нагрузке, что не займет много времени при правильном выборе коэффициента форсирования нагрузки.

    Принцип «запросов» применяется при ускоренных испытаниях изделий машиностроения, отказ которых обусловливается постепенным накоплением износных повреждений, проявляющихся в монотонном изменении уровня контролируемого выходного параметра (износа лимитирующего элемента, производительности, расхода энергии и др.).

    Ускоренные ресурсные испытания по принципу запросов предназначены для ориентировочной оценки ресурса испытываемого образца изделия до достижения заданного предельного износа или оценки износа, соответствующего заданной наработке изделия в нормальном режиме. Под износом здесь понимается изменение любого параметра, характеризующего степень постепенной утраты испытуемым изделием ресурса. Износ отсчитывается от начала испытаний.

    Принцип «запросов» применим для объектов со стационарным и нестационарным изнашиванием в нормальном режиме. Наиболее эффективно использование данного метода для нестационарного изнашивания, когда интенсивность изнашивания (или скорость размерного износа) зависит от величины накопленного износа. При наличии информации о стационарности изнашивания объекта в эксплуатации целесообразнее использование методов сокращенных испытаний (ускоренных испытаний, не связанных с форсированием режимов).

    Испытания по принципу «запросов» проводятся при последовательном ступенчатом чередовании нормального и форсированного режимов в процессе испытаний каждого образца. В процессе испытаний устанавливается зависимость интенсивности изнашивания в нормальном режиме от уровня накопленного изделием износа при условии, что эта зависимость, полученная по результатам ступенчатых испытаний, справедлива для процесса изнашивания в нормальном режиме в интервале от момента окончания приработки до накопления предельного износа. Ускоренное получение всего необходимого ряда уровней накопленного износа обеспечивается испытаниями на ступенях с форсированным режимом (форсированных ступенях).

    Достоверность результатов испытаний кроме прочих факторов (погрешности измерений и т.п.) определяется правильностью выбора вида функции изменения интенсивности изнашивания от уровня накопленного изделием износа (или соответствующей функции накопления износа от времени). В процессе обработки результатов испытаний возможна корректировка с целью выбора функции, отличной от предварительно выбранной и приводящей к меньшей по сравнению с ней погрешностью результатов.

    При испытаниях по данному методу в качестве нормального режима на соответствующих ступенях применяют любой режим, по отношению к которому оценивается ресурс изделия: постоянный режим, режим с циклическим или стационарным случайным изменением уровня внешних нагрузочных воздействий и др. Параметры нормального режима должны задаваться нормативно-технической документацией, отражающей требования к надежности изделия. При отсутствии таких требований параметры нормального режима назначают в соответствии с требованиями работы изделия в эксплуатации по общим правилам выбора режимов нормальных ресурсных испытаний.

    Форсированный режим должен быть выбран таким, чтобы скорость изнашивания на каждой ступени с нормальным режимом (нормальной ступени) при данном значении износа (или в данном диапазоне износа) не зависела от того, при каком режиме был накоплен этот износ - форсированном или нормальном.

    К возможным причинам невыполнения этого требования относятся следующие:

    а) форсированный режим обладает свойством избирательности по отношению к отдельным элементам изделия, что приводит к изменению относительного распределения износа:

    Между отдельными деталями и узлами изделия;

    Между поверхностями трения сопряжения;

    По отдельным участкам одной и той же поверхности трения и т.п.;

    б) форсированный режим приводит к значительным изменениям физико-химического состояния поверхностей трения по отношению к условиям работы в нормальном режиме или изменениям, совершенно не свойственным таким условиям, например, пластическому деформированию поверхностных слоев, шаржированию абразивных частиц на поверхности трения, образованию дополнительных вторичных структур и др.

    Отсутствие последействия режима в отношении скорости изнашивания на последующей нормальной ступени можно подтвердить непосредственно в процессе испытаний нескольких образцов изделия по настоящему методу. С этой целью испытания двух образцов строятся так, что износ, накопленный в одном из.образцов в нормальном режиме после первой форсированной ступени, достигается другим образцом путем испытаний только в нормальном режиме. При этом скорость изнашивания в нормальном режиме после форсированной ступени для одного образца сопоставляется с аналогичной скоростью изнашивания для второго образца.

    Испытания каждого испытуемого образца методом запросов начинают с приработочной ступени, проводимой в режиме, установленном для приработки данного изделия. После окончания ступени производят измерение приработочного износа.

    В последние годы вопрос о приемочных испытаниях стоит очень остро. Многие считают, что стандарты в нашей стране используются на добровольной основе, а Технический регламент не дает прямых указаний на необходимость приемочных испытаний. Встречаются и такие суждения: зачем вкладывать лишние средства, если все равно нужно оформлять сертификат. Или: разрешение на применение можно не получать, приемочные испытания тоже лишняя процедура, и т. д.

    Попробуем разобраться.

    Технический регламент

    С середины февраля 2013 года вступил в силу документ, который долго ждали: "О безопасности машин и оборудования" ТР ТС 010/2011. В нем прописаны прямые указания по гарантии безопасности при проектных работах и последующем изготовлении. То есть разговор идет о том, что необходимо определить и установить допустимый для машины и/или оборудования риск. При этом уровень безопасности должен быть обеспечен:

    • комплексом расчетов и испытаний, которые основаны на проверенных методических разработках;
    • полнотой опытно-конструкторских и научно-исследовательских работ;
    • изготовление машины и/или оборудования должно сопровождаться испытаниями, прописанными в прилагаемой конструкторской (проектной) документации.

    То есть понятно, что и проектная организация, и производитель обязаны произвести испытания объекта. Они предусматриваются проектной документацией, их необходимо осуществить до сертификации (процедуры, подтверждающей соответствие). Очевиден факт декларирования - наличия документа о собственных испытаниях, проведенных до процедуры подтверждения. Но непонятно, какие испытания имеются в виду.

    Понятие «испытание»

    Оно означает техническое действие, которое дает возможность проверить инженерные характеристики объекта (изделия), определить степень износа, качество и пригодность к длительному использованию. Испытывать опытный образец разрешено как по отдельным элементам, так и в комплексе.

    Этапы испытаний

    Выделяют ведомственные, межведомственные и государственные приемочные испытания. ГОСТ 34.601-90 устанавливает следующие их виды:

    • предварительные;
    • опытные;
    • приемочные.

    Любой из них требует соблюдения определенной процедуры, для которой разрабатываются специальный документ - программа приемочных испытаний. Ее должен утвердить заказчик. В программе прописывается объем испытаний, причем как необходимый, так и достаточный, обеспечивающий назначенную полноту получаемых результатов и их достоверность.

    Предварительные испытания должны проводиться после тестирования и предварительной отладки оборудования.

    Опытные испытания проходят с целью определения готовности оборудования (машины, системы) к постоянной эксплуатации. Без этих испытаний запрещено проводить приемочные тесты.

    Завершающий этап

    Это приемочные испытания. От них зависит путевка в жизнь разрабатываемого оборудования (машины, системы). Этот этап дает ответы на вопросы, поставленные перед проектировщиками. В первую очередь, это соответствие заданному назначению, производительности и технико-экономической эффективности, то, будет ли она соответствовать современным требованиям техники безопасности и способствовать улучшению труда рабочих.

    Еще в ходе приемочных испытаний проверяют:

    • оценку успешности пройденных опытных испытаний;
    • принятие решения о возможности запуска оборудования (машины, системы) в промышленную эксплуатацию.

    Проводятся приемочные испытания на объекте заказчика (причем уже действующем). Для этого издается приказ или распоряжение об исполнении необходимых работ.

    Оба этих документа пишутся по действующим положениям и стандартам, разработанным для отдельных видов объектов. Утверждаются они министерствами, курирующими проектирующие организации.

    В программе подробно прописываются:

    • цель предстоящих работ и их объем;
    • критерии приемки как объекта в целом, так и его частей;
    • перечень объектов, подлежащих испытаниям, а также список требований, которым объект должен соответствовать (обязательно с указаниями на пункты технического задания);
    • условия прохождения испытаний и сроки;
    • материальное и метрологическое обеспечение предстоящих работ;
    • средства проведения испытаний: технические и организационные;
    • методика проведения приемочных испытаний и обработки полученных результатов;
    • фамилии лиц, назначенных ответственными за проведение испытательных работ;
    • перечень необходимой документации;
    • проверка ее качества (в основном эксплуатационной и конструкторской).

    В зависимости от технических и прочих характеристик объекта исследования, документ может содержать указанные разделы, но при необходимости они могут быть сокращены или введены новые.

    Пакет документов для разработки Программы и методики

    Требования к оформлению и содержанию этих документов регламентируются ГОСТ 13.301-79.

    Перечень документов для создания Программы и методики не является постоянным. Он изменяется в зависимости от отношения тестируемого объекта к тому или министерству или организации. Но в общем случае потребуются следующие документы:

    • руководство по эксплуатации;
    • нормативно - техническая документация: технические условия, стандарты и пр.;
    • паспорт принимаемого объекта;
    • документы о пройденной регистрации от предприятия-изготовителя;
    • чертежи и описания;
    • протоколы заводских испытаний (для иностранных производителей).

    Составленные и заверенные Программа и методика испытательных работ заказчиком и специалистами Ростехнадзора регистрируется в Федеральном Агентстве.

    Комиссия

    Для приемочных испытаний она формируется соответствующим указом по предприятию. В комиссию должны входить представители поставщика комплектующих частей, заказчика, проектной организации, разработчика, органов технадзора и организаций, занимающихся монтажными и Утверждается комиссия профильным министерством.

    В своей работе комиссия использует следующие документы:

    • техническое задание на создание оборудования (машины, системы);
    • протокол предварительных испытаний;
    • исполнительную документацию по проведению монтажа;
    • программу приемочных испытаний;
    • акты (при необходимости);
    • рабочие журналы с опытных тестов;
    • акты приемки с них и завершения;
    • техническую документацию на оборудование (машину, систему).

    Перед приемочными испытаниями системную документацию и техническую дорабатывают согласно замечаниям протокола проведения предварительных испытаний и акта о завершении опытных тестов.

    Предприятие-производитель и проектирующая организация должны предоставить приемочной комиссии:

    • материалы проведенных предварительных испытаний;
    • опытные объекты, удачно прошедшие предварительные испытания;
    • рецензии, заключения экспертов, патенты, авторские свидетельства, оформленные в процессе приемочных испытаний на образец разработки;
    • прочие материалы, утвержденные методиками испытаний для определенных видов объектов и типовыми программами.

    Проверка

    Это один из главных пунктов приемочных испытаний. Они не должны дублировать предыдущие этапы, а сроки их проведения сжаты.

    Приемочные испытания включают в себя проверку:

    • качества и полноты реализации функций оборудования (машины, системы) в соответствии с техническим заданием;
    • работы обслуживающего персонала в диалоговом режиме;
    • исполнения любого требования, относящегося к оборудованию (машине, системе);
    • комплектности эксплуатационной и сопроводительной документации, и их качества;
    • методов и средств, необходимых для восстановления работоспособности объекта после возможных отказов.

    Если испытываются два и более объекта, обладающих сходными характеристиками, то для испытаний создаются одинаковые условия.

    На протяжении приемочных испытаний не проводятся исследования на долговечность и надежность, но полученные по ходу тестов показатели должны заноситься в соответствующие акты.

    Окончание испытаний

    Приемочные испытания завершаются технической экспертизой. То есть, объект разбирается, и устанавливаются техническое состояние его элементов (узлов), а также трудоемкость разборки и сборки всего объекта исследования.

    По окончании работ комиссия разрабатывает и составляет протокол проведённых испытаний. На его основе далее будет приемки. В случае необходимости комиссия определяет объем доработки оборудования (машины, системы) и/или технической документации, а также дает рекомендации по запуску тестируемого объекта в серийное производство.

    Если это невозможно, то акт проведения приемочных испытаний дополняется предложениями по совершенствованию изделия, повторному приемочному испытанию или требованием по прекращению работ над объектом.

    Акты и результаты

    Акты о приемке объекта утверждает руководство предприятия, назначившее комиссию для проведения испытаний.

    Методика приемочных испытаний рекомендует в случае необходимости рассмотреть результаты проведенных испытаний на научно-техническом совете профильного министерства или предприятия, разрабатывающего объект совместно с заказчиком (то есть еще до утверждения акта приемки).

    Решение о запуске испытанных объектов в серию принимается на основании материалов и рекомендаций приемочной комиссии и/или научно-технического совета приказом по министерству. В нем обязательно указывается объем производства, и даются рекомендации по внедрению.

    Акт приемочных испытаний

    Четыре года назад были отменены унифицированные формы первичных документов. Это дало организациям право разрабатывать собственные шаблоны любого документа. Главное, при этом соблюдать следующие требования:

    • Подписывается документ всеми лицами, его составившими. Если одно из них действует по доверенности, это необходимо отразить в акте.
    • На законность акта не влияет, оформлен он на обычном листе писчей бумаги или на фирменном бланке. Как, кстати, и то, от руки написан документ или набран на компьютере (главное - «живые» подписи).
    • Штампы и печати ставятся на документ, если это прописано в уставе и/или учетной политике организации.
    • Логически акт имеет три части: начало (так называемую шапку - дата, название, место составления), основную часть и заключение.

    Количество экземпляров документов равно количеству подписавших его сторон. Каждый из них имеет одинаковый правовой статус и идентичный текст. Информация об акте заносится в специализированный журнал учета документации организации.

    Ошибок и описок в документе о проведении приемочных испытаний быть не должно. Потому как он может быть не только основанием для постановки объекта на баланс организации или его списания, но и основным подтверждающим документом при обращении с исковым заявлением в судебную инстанцию.

    По центру страницы пишется название документа, ниже - место составления (город, поселок и т. д.) и дата.

    Основная часть акта содержит следующую информацию:

    • Состав комиссии . Указывается предприятие (организация, министерство), представители, которых будут подписывать документ, далее их должности и полные фамилия, имя и отчество.
    • Наименование объекта и реальный адрес его монтажа.
    • Подробно расписанный перечень испытательных работ (оформляется в виде списка или таблицы) с информацией об условиях прохождения испытаний.
    • В случае обнаружения недостатков их, как и предложения по устранению, вносят либо ниже, либо оформляют приложение к акту.
    • Акт приемочных испытаний (образец приведен ниже) заканчивается выводами комиссии о дееспособности или недееспособности испытуемого объекта.

    Мнение какого-либо члена комиссии, отличное от остальных, обязательно прописывается либо в самом акте (отдельным пунктом), либо в приложении к нему. Все сопровождающие акт бумаги тоже перечисляются в нем.

    И только после этого все участники составления документа ставят свои подписи и расшифровывают их.

    Завершение работ

    Подписанный акт входит в комплект объект, который проходит испытания. Хранится акт либо в соответствии с действующим законодательством, либо в порядке, установленном нормативными актами организации.